Using water molecules to unlock neurons' secrets

December 11, 2018

Neurons are brain cells that communicate with each other by sending electrochemical signals along axons. When a neuron is about to release a signal - in the form of an electric charge - it allows ions to pass through its membrane via ion channels. This ion transfer creates an electrical potential difference between the inside and outside of the cell, and that difference is referred to as the membrane potential.

A team of researchers at the Laboratory for fundamental BioPhotonics (LBP) within EPFL's School of Engineering (STI) has come up with a way to monitor changes in membrane potential and to observe ion fluxes by studying the behavior of the water molecules surrounding the membranes of the neurons. The researchers, who successfully tested their method on in vitro mouse neurons, have just published their findings in Nature Communications.

No more electrodes or fluorophores

A better understanding of the electrical activity of neurons could provide insight into a number of processes taking place in our brains. For example, scientists could see whether a neuron is active or resting, or if it is responding to drug treatment. Up until now, the only way to monitor neurons was by injecting fluorophores into, or attaching electrodes onto, the part of the brain being studied - but fluorophores can be toxic, and electrodes can damage the neurons.

Recently, the LBP researchers developed a way of tracking electrical activity in neurons simply by looking at the interactions between water molecules and the neural membranes. "Neurons are surrounded by water molecules, which change orientation in the presence of an electric charge," says Sylvie Roke, director of the LBP. "When the membrane potential changes, the water molecules will re-orient - and we can observe that."

In their study, the researchers altered the neuronal membrane potential by subjecting the neurons to a rapid influx of potassium ions. This caused the ion channels on the neurons' surface - which serve to regulate the membrane potential - to open and let the ions through. The researchers then turned off the flow of ions, and the neurons released the ions that they had picked up.

In order to monitor this activity, the researchers probed the hydrated neuronal lipid membranes by illuminating the cells with two laser beams of the same frequency. These beams consist of femtosecond laser pulses -using technology for which the 2018 Nobel prize in physics was awarded- so that the water molecules on the interface of the membrane generate photons with a different frequency, known as second-harmonic light.

"We see both fundamental and applied implications of our research. Not only can it help us understand the mechanisms that the brain uses to send information, but it could also appeal to pharmaceutical companies interested in in vitro product testing," adds Roke. "And we have now shown that we can analyze a single neuron or any number of neurons at a time."
-end-
Reference: M. E. P. Didier, O. B. Tarun, P. Jourdain, P. Magistretti, and S. Roke, "Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level," Nature Communications.

Julia Jacobi Chair of Photomedicine - Laboratory for fundamental BioPhotonics

Ecole Polytechnique Fédérale de Lausanne

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.