Yale chemists find a new tool for understanding enzymes -- Google

December 11, 2018

New Haven, Conn. - Yale scientists have taken a novel approach to unraveling the complex structure and regulation of enzymes: They Googled it.

In a new study published online this week in the Proceedings of the National Academy of Sciences, chemistry professor Victor Batista and his colleagues used the Google algorithm PageRank to identify key amino acids in the regulation of a bacterial enzyme essential for most microorganisms.

Enzymes are biomolecules with the unique capability of accelerating chemical reactions that are necessary for life. Although these chemical reactions normally take place in a small portion of the enzyme -- known as the active site -- the acceleration of the reaction is usually regulated by the binding of a molecule in a different part of the enzyme. The binding position is known as the allosteric site.

Despite decades of study, it is still poorly understood how information is transferred from the allosteric site to the active site. Much of the difficulty has to do with the large number of atoms involved and the great structural flexibility of enzymes.

The Yale team noted that a similar question had been addressed years earlier in the realm of computer science. Researchers at Google had studied the flow of information on the Internet, using PageRank to indicate the importance of each web page in terms of the number and quality of links to other Internet sites.

"This problem is completely analogous to the exchange of information between distant sites that characterizes allosterism," said Uriel Morzan, a postdoctoral associate in Batista's lab and co-first author of the study. "By finding out how the information flow through each atom changes with the binding of an allosteric activator to the enzyme, it is possible to find the information channels that are being activated."

The Yale researchers identified important amino acids for the allosteric process in imidazole glycerol phosphate synthase (IGPS), a bacterial enzyme found in most microorganisms.

The research paves the way for additional experiments related to IGPS activity that may lead to the development of new antibiotics, pesticides, and herbicides.

"It's exciting that data science methods are starting to percolate into the field of theoretical chemistry, providing new tools for understanding fundamental aspects of catalytic molecular systems when combined with state-of-the-art molecular dynamics simulations and nuclear magnetic resonance (NMR) spectroscopy," said Batista, who is also a member of the Energy Sciences Institute at Yale's West Campus.

Co-author J. Patrick Loria, a Yale professor of chemistry and of molecular biophysics and biochemistry, added: "It is the synergistic combination of experimental NMR and computational tools that enables this deeper insight into biological function and demonstrates the importance of collaboration between theorists and experimentalists."
The study's other co-first author is Christian Negre of Los Alamos National Laboratory. Co-authors are Batista and J. Patrick Loria of Yale; former Yale researchers Heidi Hendrickson, Rhitankar Pal, and George Lisi; Ivan Rivalta of the University of Lyon; and Junming Ho of the University of New South Wales.

The research was supported, in part, by the National Institutes of Health and the National Science Foundation.

Yale University

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.