Nav: Home

Insights into psoriasis suggest a new treatment target

December 11, 2019

Boston, MA -- Psoriasis is a skin disorder that affects at least 100 million individuals worldwide. Its economic impact is more than $10 billion annually in the U.S. alone. Involved skin becomes thickened, red, and covered with silvery scales, while changes to the nails and deforming inflammation of the joints may also occur in up to one-third of affected individuals. The underlying cause of psoriasis remains a mystery, and effective targeted therapies remain to be developed. Now, investigators from Brigham and Women's Hospital and the Harvard Stem Cell Institute have uncovered a novel pathway that may explain why skin thickens in psoriasis and suggests new strategies for developing therapies for the condition. The team's results are published in the Journal of Investigative Dermatology.

"Psoriasis places social and psychological stress on patients and is associated with risk of diabetes, cardiovascular disease and more. While steroids and biologics can be prescribed, we don't have a cure because we haven't understood the cause," said co-senior author George Murphy, MD, director of the Program in Dermatopathology in the Department of Pathology at the Brigham. "Our initial finding that skin thickening in psoriasis is due to build-up of dysregulated stem cells and their progeny are exciting because it represents a new way of thinking about an old and significant skin disease."

To better understand the basis for the dysregulated skin stem cell behavior, the investigators focused on the epigenome, the methylated wrapping that covers each DNA strand and orchestrates how individual genes behave.

"Without understanding the mechanism underlying a disease, it's hard to find effective treatments," said co-senior author Christine Lian, MD, a dermatopathologist in the Department of Pathology at the Brigham. "The question we decided to pursue was: Is there an epigenetic abnormality in psoriasis that may explain why stem cells are misbehaving?"

Lian, Murphy and their colleagues found a defect in the epigenetic covering that resulted in the loss of a DNA methylation hydroxymethylation mark. Known as loss of 5-hmC, this defect was found in cells from patients with psoriasis but not other skin conditions that produce a similar skin thickening, such as callous-like areas from chronic irritation. The team replicated the defect in a mouse model of psoriasis and found that it preferentially affected genes that regulated the function of skin cells.

Lian and Murphy have previously shown that 5-hmC loss in the skin epigenome can be reprogrammed using agents as fundamental as ascorbic acid (vitamin C). They reasoned that therapeutic correction of the epigenomic defect in psoriasis might reverse the entire process. Based on experiments using skin stem cell cultures in the lab, the team presents promising preliminary data suggesting that 5-hmC levels can be restored to correct the deficiency seen in psoriasis.

The investigators note that while there is much interest in the role of vitamin C, additional research is needed to develop and test effective treatments since simply taking a vitamin supplement is likely to have little effect. The team has begun work on the next research steps, which will involve three-dimensional bioprinting of skin stem cells in the context of their supportive niches to test other epigenetic reprogramming agents.

"If successful, our epigenetic stem cell explanation for psoriasis hopefully could transform therapy, allowing for more personalized and targeted approaches directed at the very cells that accumulate to form the heartbreak of this all-too-often devastating skin condition," said Murphy.
-end-
This work was supported by the LEO Foundation, the Harvard Stem Cell Institute, and the Department of Pathology at the Brigham.

Brigham Health, a global leader in creating a healthier world, consists of Brigham and Women's Hospital, Brigham and Women's Faulkner Hospital, the Brigham and Women's Physicians Organization and many related facilities and programs. With more than 1,000 inpatient beds, approximately 60,000 inpatient stays and 1.7 million outpatient encounters annually, Brigham Health's 1,200 physicians provide expert care in virtually every medical and surgical specialty to patients locally, regionally and around the world. An international leader in basic, clinical and translational research, Brigham Health has nearly 5,000 scientists, including physician-investigators, renowned biomedical researchers and faculty supported by over $700 million in funding. The Brigham's medical preeminence dates back to 1832, and now, with 19,000 employees, that rich history is the foundation for its commitment to research, innovation, and community. Boston-based Brigham and Women's Hospital is a teaching affiliate of Harvard Medical School and dedicated to educating and training the next generation of health care professionals. For more information, resources, and to follow us on social media, please visit brighamandwomens.org.

Brigham and Women's Hospital

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.