Scrubbing carbon dioxide from smokestacks for cleaner industrial emissions

December 11, 2019

CORVALLIS, Ore. - An international team co-led by an Oregon State University chemistry researcher has uncovered a better way to scrub carbon dioxide from smokestack emissions, which could be a key to mitigating global climate change.

Published today in Nature, the findings are important because atmospheric CO2 has increased 40 percent since the dawn of the industrial age, contributing heavily to a warming planet.

Kyriakos Stylianou of the OSU College of Science and colleagues from the École Polytechnique fédérale de Lausanne, Heriot-Watt University in Scotland, the University of Ottawa, and the University of Granada in Spain used data mining as a springboard for diving into a key challenge: dealing with the water portion of smokestack gases that greatly complicates removing the CO2.

The data mining involved hundreds of thousands of nanomaterials known as metal organic frameworks, usually abbreviated to MOFs. MOFs hold the potential to intercept, through adsorption, CO2 molecules as the flue gases make their way out of the smokestack.

Flue gases can be dried, but that adds significant expense to the CO2 capture process.

"There are a countless number of structurally and chemically distinct MOFs, but the challenge with most of them is that they do not perform well when subjected to testing with realistic flue gases," Stylianou said. "The water in flue gases competes with the CO2 for the same adsorption sites, which means those MOFs are not scrubbing selectively like we want them to."

Sifting through more than 325,000 MOFs in a digital library, scientists identified different types of CO2 binding sites, which they dubbed "adsorbaphores," that would maintain their selectivity in the presence of water.

Then in the lab, Stylianou's doctoral student, Arunraj Chidambaram, made two of the MOFs that contained a hydrophobic - water-repelling - adsorbaphore consisting of two aromatic cores and tested them. The scientists found that not only was the separation performance of the MOFs unaffected by water, they also outperformed some of the CO2 removal materials currently on the market such as activated carbon and zeolite 13X.

"We went from design to synthesis and application," Stylianou said. "We used computations to discover active sites for CO2 capture. The MOFs performed optimally for wet flue CO2 capture because these MOFs have two distinct sites in their structures; one for water and one for CO2, and therefore, CO2 and water molecules do not compete with each other."

Further research, he added, will look at scaling: How to make and test the MOFs on the type of scope required by the large-magnitude challenge industrial CO2 emissions represent.

According to the National Atmospheric and Oceanic Administration, the global average atmospheric carbon dioxide concentration in 2018 was 407.4 parts per million, higher than at any time in at least 800,000 years.

Fossil fuels like coal and oil contain carbon that plants pulled out of the atmosphere through photosynthesis over millions of years. That same carbon is now being returned to the atmosphere in a matter of hundreds of years because fossil fuels are being burned for energy, including by factories and other large-scale industrial facilities.

The annual rate of increase in atmospheric CO2 over the past six decades is roughly 100 times faster than increases resulting from natural causes, such as those that happened following the last ice age more than 10,000 years ago, according to NOAA.

Unlike oxygen or nitrogen, which account for most of the atmosphere, greenhouse gases absorb heat and release it gradually over time. Absent those greenhouse gases, the planet's average annual temperature would be below freezing rather than around 60 degrees Fahrenheit, but too-high levels of greenhouse gases cause the Earth's energy budget to become unbalanced.
-end-
The U.S. Dept. of Energy, the United Kingdom's Department for Business, Energy & Industrial Strategy, Switzerland's Federal Office of Energy, the Swiss National Science Foundation, the European Research Council, Switzerland's National Center of Competence in Research, the European Union, and the Center for Gas Separations Relevant to Clean Energy supported this research.

Oregon State University

Related Greenhouse Gases Articles from Brightsurf:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.

Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.

A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.

Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.

White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.

Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.

What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.

Read More: Greenhouse Gases News and Greenhouse Gases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.