Trapping nanoparticles with optical tweezers

December 11, 2020

Optical tweezers are a rapidly growing technology, and have opened up a wide variety of research applications in recent years. The devices operate by trapping particles at the focal points of tightly focused laser beams, allowing researchers to manipulate the objects without any physical contact. So far, optical tweezers have been used to confine objects just micrometres across - yet there is now a growing desire amongst researchers to extend the technology to nanometre-scale particles. In new research published in EPJ E, Janine Emile and Olivier Emile at the University of Rennes, France, demonstrate a novel tweezer design, which enabled them to trap fluorescent particles just 200 nanometres across for the first time.

If made available for widespread use, nanoscale optical traps could be used for experimental procedures requiring extreme degrees of precision - including direct measurements of nanoscale forces, alterations of cell membranes, and manipulations of viruses and DNA strands. Emile and Emile's design was based around 'Arago spots': bright points of light which form in the centres of circular shadows, as light diffracts around the objects creating them. In addition, they relied on the principle of 'total internal reflection' - where light rays hitting a glass-liquid interface at just the right angle are perfectly reflected.

In the experiment, the duo fired a perfectly aligned laser beam onto the interface between a glass plate, and a liquid containing suspended fluorescent nanoparticles; with an opaque circular disk partially blocking its path. The resulting Arago spot was then totally reflected at the interface, creating an exponentially fading wave which ran out from the spot in all directions. Finally, suspended nanoparticles could be positioned inside this donut shaped wave, and excited by a separate laser to emit light themselves. The resulting forces imparted by these light waves caused the particles to become tightly confined at the Arago spot. With further improvements to this setup, nanoscale optical tweezers could soon open new opportunities for research, in areas ranging from medicine to quantum computing.
-end-
Reference

O. Emile, J. Emile (2020), Nanometre optical trap based on stimulated emission in evanescence of a totally reflected Arago spot, Eur. Phys. J. E 43:68. https://doi.org/10.1140/epje/i2020-11991-6

Springer

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.