Using water fleas, UTA researchers investigate adaptive evolution

December 11, 2020

Researchers from The University of Texas at Arlington resurrected the preserved eggs of a shrimp-like crustacean to examine long-standing questions about adaptive evolution, reporting the results in the journal Proceedings of the National Academy of Science.

The study explores the evolutionary impacts of species invasions by studying Daphnia, a shrimp-like crustacean also known as the water flea. Matthew Walsh, associate professor of biology; Alex Landy, UTA postdoctoral researcher; and their colleagues collected sediment cores containing the preserved eggs of Daphnia from lakes in Wisconsin following the invasion of a novel predator. The researchers then "resurrected" the eggs in hopes of seeing novel evolutionary processes in real time.

"Each layer of the sediment core represents a distinct time period and contains a generation of water flea eggs that sank to the lake floor," Walsh said. "By hatching the eggs, we are able to measure the viability and traits of water fleas from before, during and after the invasion of the novel predator."

According to the study, variations in how the ancestors responded to the novel predator were central to water flea adaptation. Yet few studies have been able to assess the characteristics of ancestral populations prior to a change in the environment, Walsh said.

"The key advance illustrated by our work is that the resurrected ancestral lineages of Daphnia revealed extensive genetic variation in their responses to exposure to a novel predator," Walsh said. "Such variation in plasticity provided a template for evolution to proceed following the establishment of the predator."

Walsh added that his team's work is important because it allows researchers to observe evolutionary processes in real time to better understand how organisms adapt to changes in environmental conditions, such as rising temperatures, habitat loss or species invasions.

"Our results highlight the importance of quantifying genetic variation in plasticity when evaluating the drivers of evolutionary change in the wild," Walsh said. "Furthermore, our work calls for more studies that quantify genetic variation in ancestral populations to better understand how and why evolution occurs in a natural setting."
-end-


University of Texas at Arlington

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.