A matter of balance: asymmetric divisions are crucial to form a functional retina

December 11, 2020

Balancing proliferation and differentiation in a developing organ are a complex act, especially when these two processes occur at the same time in the same space. The retina is an important interface between the body and the external world: it sits at the back of our eyes and receives and encodes all the visual information, so that our brain can continuously process the pictures of what the world has to offer. "For attaining this function, the retina requires a precise balance of different types of neurons organised in several interconnected layers, each receiving, pooling or filtering the visual input", explains Elisa Nerli, first author of the study and researcher at Instituto Gulbenkian de Ciência. "The formation of the different neurons in the correct numbers and proportions is ultimately ensured by balancing cellular proliferation and differentiation during development".

Studying the development of the zebrafish retina, the team led by Caren Norden, principal investigator at the Instituto Gulbenkian de Ciência, discovered that this balancing depends on asymmetric divisions of progenitor cells on their way to making functional neurons. "We further found"- Nerli continues - "that the molecular regulation of this process relies on the Notch signalling pathway, since its inhibition interferes with the division asymmetry. We were able to observe that Notch is asymmetrically distributed during cells division. The cell that inherits Notch signalling will continue to proliferate, whereas the other cell will enter a neurogenic lineage".

Overall, this study adds new perspectives to the fundamental understanding of how cellular decisions of proliferation or differentiation can regulate the development of the nervous system. Understanding how the balance between these processes is determined and maintained is important for a better understanding of brain development, in health and in disease.
This study was mainly conducted at Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, and finished at the Instituto Gulbenkian de Ciência. It was funded by the ERC Consolidator Grant (H2020 ERC-2018-CoG-81904) and the Deutsche Forschungsgemeinschaft (NO 1068/5-1).

Instituto Gulbenkian de Ciencia

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.