Researchers Discover How Green Tea May Prevent Cancer

December 11, 1998

WEST LAFAYETTE, Ind. -- Green tea, long associated with good health, has new scientific evidence to back its claim.

Purdue University researchers Dorothy Morre and D. James Morre (pronounced MORE-aye) found that EGCg, a compound in green tea, inhibits an enzyme required for cancer cell growth and can kill cultured cancer cells with no ill effect on healthy cells.

The findings offer the first scientific evidence to explain precisely how this compound works within a cell to ward off cancer. The results will be presented Monday (12/14) at the 38th annual meeting of the American Society for Cell Biology in San Francisco.

"Our research shows that green tea leaves are rich in this anti-cancer compound, with concentrations high enough to induce anti-cancer effects in the body," says Dorothy Morre, professor of foods and nutrition in Purdue's School of Consumer and Family Sciences.

The findings suggest that drinking more than four cups of green tea a day could provide enough of the active compound to slow and prevent the growth of cancer cells, she says.

Although all teas come from the same botanical source, green tea differs from black tea or other teas because of the way the tea leaves are processed after they are picked. For black tea, freshly picked leaves are "withered" indoors and allowed to oxidize. With green tea, the leaves are not oxidized, but are steamed and parched to better preserve the natural active substances of the leaf.

Epidemiologists have found that people who drink more than four cups a day of green tea seem to have a lower overall risk of cancer, but scientists were unsure how the tea produced these effects.

Morre and her husband, who is the Dow Distinguished Professor of Medicinal Chemistry and Molecular Pharmacology at Purdue, show in their independent study how green tea interacts with an enzyme on the surface of many types of cancer cells including breast, prostate, colon and neuroblastoma. This enzyme, called quinol oxidase, or NOX, helps carry out several functions on the cell surface and is required for growth in both normal and cancerous cells.

"Normal cells express the NOX enzyme only when they are dividing in response to growth hormone signals," Dorothy Morre says. "In contrast, cancer cells have somehow gained the ability to express NOX activity at all times." This overactive form of NOX, known as tNOX -- for tumor-associated NOX -- has long been assumed to be vital for the growth of cancer cells, because drugs that inhibit tNOX activity also block tumor cell growth in culture.

After hearing a researcher discuss green tea's anti-cancer potential on a television show, the couple set out to investigate whether tea infusions -- made when the compounds of tea leaves leach into hot water -- would have an effect on tNOX enzyme activity.

In studies of cultured cells and isolated membranes of cells, they found that black tea could inhibit tNOX activity at dilutions of one part tea to 100 parts of water.

The green tea infusions, however, were 10 to 100 times more potent, inhibiting the activity of tNOX at dilutions ranging from one part tea per 1,000 to 10,000 parts water.

"This finding suggested that green tea leaves are rich in a compound that inhibits tNOX," Dorothy Morre says. "With concentrations of the active compound at these levels, drinking several cups of green tea per day might inhibit the growth of cancer cells in the body."

To determine what the active compound was, Morre and her husband tested a number of compounds found in tea, including epigallocatechin gallate, or EGCg, a primary component of green tea that has been linked to anti-cancer effects.

Their studies, done with cultured cells and with purified NOX protein in solutions, found that EGCg was capable of inhibiting the tNOX activity of cancer cells at low doses -- such as those that could be derived from drinking several cups of green tea per day -- but did not inhibit the NOX activity of healthy cells.

The Morres also found that EGCg inhibits the growth of, and kills, cancerous human mammary cells in culture, but does not kill cultured, non-cancerous human mammary cells.

"This is one of the first studies to directly link the EGCg in green tea to anti-cancer activity," Dorothy Morre says.

The Purdue team also determined how the cancer cells died. "In the presence of EGCg, the cancer cells literally failed to grow or enlarge after division," Dorothy Morre says. "Then, presumably because they did not reach the minimum size needed to divide, they underwent programmed cell death, or apoptosis."

Others who worked on the research are Andrew Bridge, a premed student at Wabash College in Crawfordsville, Ind.; Peichuan Sun, a graduate student supervised by Dorothy Morre; and Lian-Ying Wu, a research technologist at Purdue.

Dorothy Morre says that further work is needed to understand how tNOX works in cancer cell growth. "For now, it is sufficient to know that when tNOX activity is inhibited, the cancerous cells eventually die," she says.
NOTE TO JOURNALISTS: Dorothy and D. James Morre will be at the Society for Cell Biology meeting in San Francisco from Saturday through Tuesday (12/12-15). They can be reached at the King George Hotel, 415-781-5050 or 800-288-6005.

Dorothy Morre, 765-494-8233; e-mail,
James Morre, 765-494-1388; e-mail,

Susan Gaidos, 765-494-2081; e-mail,

Purdue University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to