Gene Discovery Paves Way For Preventing Deadly Bacterial Shock

December 11, 1998

DALLAS - December 11, 1998 - Identification of a gene that normally prevents endotoxic shock - which causes at least 20,000 deaths a year in the United States and possibly one million worldwide - was reported by UT Southwestern Medical Center at Dallas researchers in today's issue of Science.

Mutations of the "toll-like receptor-4" (Tlr4) gene in mice, and presumably in humans, create susceptibility to overwhelming infections caused by bacteria such as Salmonella. Endotoxic shock can occur when bacterial invasions become severe and systemic. Discovery of the gene may enable creation of a test to screen for people with Tlr4 genetic defects. Doctors could then use antibiotics to prevent the acceleration of infection.

"The knowledge that these mutations make mice highly susceptible to certain bacterial infections puts us in a position to identify comparable mutations in people to determine if they also are predisposed to these diseases," said Dr. Bruce Beutler, professor of internal medicine, Howard Hughes Medical Institute (HHMI) investigator and lead researcher on the study. "If so, we could protect susceptible individuals with antibiotics, eliminating some and perhaps most cases of endotoxic shock before they begin."

Tlr4 is necessary for cells to respond to endotoxin, a substance made by bacteria that is among the most potent activators of the body's defense against infections. Its cloning culminated a five-year effort in which the scientists mapped a minute region of the mouse genome, identified every gene in the region, and then pinpointed Tlr4. The project was intensely competitive with several groups of scientists from industry and academia racing to find this important gene.

"Endotoxin does not directly harm most cells of the body, but it triggers release of chemical weapons against infection," Beutler said. "At an early stage of an infection, these weapons, including tumor necrosis factor (TNF) and interleukin-1 (IL-1), alert the immune system, mobilizing a defensive response.

"If the early-warning system fails, the infection continues to spread throughout the body. This can result in massive overproduction of TNF and IL-1," Beutler said. "This deluge of chemical weapons can cause shock."

Discovery of the gene which is vital in activating the early-warning system is especially significant because it advances researchers' understanding of how the immune system detects endotoxin.

"We have proven that a single gene is essential for sensing endotoxin, and we have identified the protein this gene encodes," he said. "This knowledge might lead to effective methods to block the endotoxin signal, thereby preventing the worst complications of certain infections."

The other researchers involved in the study were: Dr. Alexander Poltorak, internal medicine postdoctoral fellow; Drs. Irina Smirnova, Xiaolong He and Chrisophe Van Huffel, HHMI postdoctoral fellows; Dr. Mu-Ya Liu, a postdoctoral fellow in pharmacology; Dale Birdwell, Erica Alejos and Maria Silva, HHMI research technicians; and researchers at the Max-Planck Institute fur Immunobiologie, Freiburg, Germany, and the Cellular and Molecular Pharmacology Center, Milan, Italy.
This news release is available on our World Wide Web home page at
To automatically receive news releases from UT Southwestern via e-mail, send a message to Leave the subject line blank and in the text box, type SUB UTSWNEWS

UT Southwestern Medical Center

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to