Engineered strategies to mitigate global warming could influence biosphere

December 12, 2001

SAN FRANCISCO -- Blocking the sun may not be such a cool way of counteracting climate change, scientists at the University of Illinois say. Potential effects upon the biosphere could be important to agriculture and forest production, and also could create secondary feedback mechanisms that may further change the climate.

A number of engineering schemes have been proposed as mitigation strategies for global warming, such as lofting reflective balloons into the stratosphere or erecting a huge parasol in orbit. By blocking some of the sunlight, these devices would create a cooling effect to offset the warming caused by increasing levels of greenhouse gases.

But, even if such feats become practical, there are concerns about how the biosphere would respond to a reduction in solar radiation. To compensate for the climate effects of doubling the amount of carbon dioxide in the atmosphere, for example, the amount of sunlight striking Earth would need to be decreased by nearly 1.8 percent.

"The biosphere plays a very important role in determining how much carbon dioxide is in the atmosphere," said Donald Wuebbles, a professor and head of atmospheric sciences at the UI. "Through photosynthesis, carbon dioxide is removed from the atmosphere and stored in plants. Decreasing the solar constant by 1.8 percent could impact the amount of biomass produced, and therefore affect how much uptake and storage of carbon dioxide occurs."

To study such effects upon the biosphere, Wuebbles and his colleagues - John Foley, a professor of atmospheric and oceanic sciences at the University of Wisconsin at Madison, and UI graduate student Vaishali Naik - used a dynamic global ecosystem model to simulate the response of vegetation to engineered climate conditions.

First, the researchers doubled the amount of carbon dioxide in the atmosphere. Then they decreased the solar constant by 1.8 percent and compared the results. The researchers found a definite influence on the biosphere. There was a decrease in net production of biomass in tropical forests and in boreal forests located in higher northern latitudes. However, there was a slight increase in biomass production in the mid-latitudes.

"We think this mixed message is coming as a result of feedback mechanisms such as changes in water stress," Wuebbles said. "Without those feedbacks, we would have seen a decrease in net primary production everywhere."

Photosynthesis depends not only on atmospheric carbon dioxide and incident solar radiation, but also on an ample water supply, Wuebbles said. "In water-stressed regions, such as deserts, biomass is heavily dependent on the availability of water, as well as sunlight. If you reduce the solar radiation, there will be less evaporation from the soil, leaving more water for plants to consume. With less water stress, the plants can grow better, creating more biomass."

While previous studies have indicated that elevated levels of carbon dioxide in the atmosphere would stimulate photosynthesis, resulting in increased primary production of vegetation, the situation is not quite that simple, Wuebbles said. "For example, blocking some sunlight would decrease plant growth, but that would also decrease uptake, which would give a positive feedback on the amount of carbon dioxide in the atmosphere, which could lead to more climate change."

More work needs to be done to understand the impacts on the biosphere from an engineered response to climate change, Wuebbles said. "In particular, we need to take into account these various feedback mechanisms that may affect the amount of carbon dioxide in the atmosphere."

Wuebbles presented the team's preliminary findings at the American Geophysical Union meeting in San Francisco on Wednesday, Dec. 12.

University of Illinois at Urbana-Champaign

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to