NASA learning to monitor coral reef health from the sky

December 12, 2003

Coral reef health may be accurately estimated from sensors on airplanes and satellites in the future, according to a NASA scientist who is the principal investigator in a collaborative project to develop a method to remotely sense coral health.

Sometimes called the "bellwether of the seas," coral reefs can give first indications of marine ecosystem health. "Scientists can use coral health as a sensitive indicator of the health of the marine environment," said Liane Guild, a scientist at NASA Ames Research Center, Moffett Field, Calif.

"We're looking into how you could remotely detect coral reef health using aircraft with visible light sensors," Guild said. "First, we have to look at the coral close up, underwater, to see what spectral reflectance the sensor picks up from diseased, stressed and healthy coral."

One of the first steps her team took to develop aerial coral monitoring was to take undersea light-reflectance readings of elkhorn coral with a handheld spectroradiometer, or light meter.

A team of four scuba divers, from the Universities of Miami, South Florida and Puerto Rico, helped Guild take the first readings at varying depths in summer 2002 near Andros Island, Bahamas, with assistance from the U.S. Navy Atlantic Undersea Test and Evaluation Center. A spectroradiometer measures the amount of ultraviolet, visible and infrared light reflected from an object, and is similar to sensors aboard remote-sensing airplanes and satellites.

"We moved up from the coral, little by little, to the surface to learn how light intensity decreases in the water column, which affects our coral reflected-light readings," Guild said.

"There also will be a layer of atmosphere between the coral, the water and the sensor when it eventually flies aboard an airplane to survey the reefs," she added.

"The effects of the atmosphere on light are pretty well known, but the challenge is to correct for the effects of the layer of water over the coral," Guild explained. "Instead of taking the top-down approach, we are going from the bottom up to the airplane, and later to satellite-sensing of coral health," Guild said.

"Ultimately, we plan to fly 'hyperspectral' instruments, containing many detectors that collect information in the visible light range," Guild explained. These instruments will provide the most useful information about coral-reef community health from above the sea, according to Guild.

The team's research emphasis is on Acropora palmata, or elkhorn coral, a major reef-building coral. It is prevalent in the study area, but is suffering from "white band disease." Elkhorn coral is on the verge of becoming an endangered species because it has severely declined in many areas of the Caribbean, Guild noted.

The team and engineering scientists from the University of Arizona also are developing a specialized computer model to analyze coral reflected-light data. The computer model will help scientists better interpret the raw data gathered by aircraft or satellites.

Guild discussed her group's work at the Fall Meeting of the American Geophysical Union on December 9, at 8:45 p.m. EST, in room 3000 of the Moscone Convention Center, San Francisco.
-end-
The research is funded by NASA's Earth Science Enterprise, which is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather and natural hazards using the unique vantage point of space.

NASA/Goddard Space Flight Center

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.