New UW study offers strategy for treatment of fatal nervous system disorder

December 12, 2005

Working with mice, University of Wisconsin-Madison researchers have developed the basis for a therapeutic strategy that could provide hope for children afflicted with Krabbe's disease, a fatal nervous system disorder.

Writing this week (Dec. 12, 2005) in the Proceedings of the National Academy of Sciences (PNAS), a team of researchers at the UW-Madison School of Veterinary Medicine describes experiments that effectively promoted the ability of defective cells to take up and utilize an enzyme that is essential for the maintenance of a critical sheathing of nerve fibers.

The work centers on devising strategies to treat inherited diseases of the nervous system in which cells fail to maintain myelin, a protective sheathing that envelops nerve fibers and acts like the insulation on an electric wire. Myelin ensures the effective transmission of the signals routinely conducted by the nervous system. For those afflicted with Krabbe's disease, the loss of myelin results in arrested motor and mental development, seizures, paralysis and, ultimately, death.

The Wisconsin experiments, led by Ian Duncan, a UW-Madison professor of medical sciences who is an expert on diseases of myelin, explored how cells obtained from a mouse model of Krabbe's disease could be reinvigorated by replacing a missing enzyme, and thus allow the healthy maintenance of myelin.

In the case of Krabbe's disease, myelination begins normally in early development. But the absence in myelin-forming cells of a key enzyme known as galactocerebrosidase leads to the death of the cells and, subsequently, the loss of myelin. "Our hypothesis was that if you provided the (flawed) myelinating cells with the enzyme, the cells would maintain the myelin as healthy cells would," says Duncan, the senior author of the PNAS paper who planned and conducted the experiments with lead author Yoichi Kondo, a postdoctoral fellow working in Duncan's lab.

Simply supplying the enzyme directly to the brain and spinal cord is complicated by a natural barrier -- the blood-brain barrier -- that makes the delivery of agents like the enzyme to the brain difficult.

"To eliminate the barrier, we changed the paradigm by transplanting enzyme-deficient cells into the brain and spinal cord of another type of mouse which can provide the enzyme," explains Duncan.

The Wisconsin group isolated progenitor cells from the mouse model of Krabbe's disease. Transplanting the cells to the brain and spinal cord of another type of mouse that lacks any myelin, the group observed that the implanted cells took up the enzyme from the host cells and sparked widespread and persistent myelination of the brain and spinal cord.

"The donor cells are stable and survive and, biochemically, enzyme levels in the graft were restored to normal," says Kondo.

Enzyme replacement therapy, Duncan notes, is not a new idea for treating such inherited demyelinating diseases. For example, work by other groups involving transplants of bone marrow and umbilical cord blood in Krabbe's patients have been attempted with some success.

But no one knew if the missing enzyme could be replaced in key cells known as oligodendrocytes, thus allowing maintenance of stable myelin throughout the nervous system.

"This experimental strategy proves that oligodendrocytes can survive and maintain myelin when transplanted into an environment where the missing enzyme is available," says Kondo.

Krabbe's disease is perhaps best known to the public through the efforts of Hall of Fame quarterback Jim Kelly, whose late son Hunter was afflicted with the disease and who established a foundation, Hunter's Hope, to promote awareness and research. The new study was funded by Hunter's Hope.

Krabbe's disease is one of a number of diseases caused by the inability to produce and maintain myelin. It afflicts about 1 in every 100,000 people and treatment options are limited at best.

The new work, the authors emphasize, provides proof of principle for a new therapeutic strategy, but any therapy developed on the group's new insights will require further study.
-end-
In addition to Duncan and Kondo, authors of the PNAS paper include David A. Wenger of Jefferson Medical College in Philadelphia, and Vittorio Gallo of the Children's National Medical Center in Washington.

University of Wisconsin-Madison

Related Bone Marrow Articles from Brightsurf:

Researchers identify the mechanism behind bone marrow failure in Fanconi anaemia
Researchers at the University of Helsinki and the Dana-Farber Cancer Institute have identified the mechanism behind bone marrow failure developing in children that suffer from Fanconi anaemia.

Nanoparticles can turn off genes in bone marrow cells
Using specialized nanoparticles, MIT engineers have developed a way to turn off specific genes in cells of the bone marrow, which play an important role in producing blood cells.

How stress affects bone marrow
Researchers from Tokyo Medical and Dental University (TMDU) identified the protein CD86 as a novel marker of infection- and inflammation-induced hematopoietic responses.

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.

Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.

Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.

Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.

Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.

Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.

Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.

Read More: Bone Marrow News and Bone Marrow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.