Cassini's infrared camera sees tall mountains on Saturn's moon Titan

December 12, 2006

The infrared-sensitive camera on NASA's Cassini spacecraft has photographed the tallest mountains ever seen on Saturn's moon, Titan.

The mountain chain is nearly a mile high (1.5 kilometers), 93 miles long (150 kilometers) and 19 miles wide (30 kilometers). The mountains are topped by bright, white material which may be methane or other organic (carbon-containing) "snow."

"We see a massive mountain range that reminds me of the Sierra Nevada in the western United States," said Cassini scientist Robert H. Brown of the University of Arizona Lunar and Planetary Laboratory in Tucson. Brown is head of Cassini's visual and infrared mapping spectrometer (VIMS), which imaged the mountains in Titan's southern hemisphere during the Oct. 25, 2006 flyby.

The camera took its highest-resolution infrared views of Titan ever during this flyby, resolving surface features as small as 400 meters, or about 440 yards. Other features seen in the high-resolution VIMS images include fields of dunes and a deposit that resembles a volcanic flow.

If Titan were Earth, the mountains would be at latitudes near New Zealand. They probably formed as mid-ocean ridges form on Earth: The surface crust pulls apart, and material beneath the crust wells up through the crack, creating a ridge.

"These mountains are probably as hard as rock, made of icy materials, and are coated with different layers of organics," said Larry Soderblom of the U.S. Geological Survey, Flagstaff, Ariz., a Cassini interdisciplinary scientist.

"There seem to be layers and layers of various coats of organic 'paint' on top of each other on these mountain tops, almost like a painter laying the background on a canvas," Soderblom said. "Some of this organic gunk falls out of the atmosphere as rain, dust or smog onto the valley floors and mountain tops, which are coated with dark spots that appear to be brushed, washed, scoured and moved around the surface."

Cassini scientists combined the new infrared data with radar data from previous flybys to better understand the height and composition of Titan's geologic features. The shadows of the mountains are seen in the infrared images, for example, while the shapes of the mountains are seen in radar. Combining these different kinds of data is essential for scientists studying Titan's geologic processes.

The Oct. 25 infrared images also reveal a fan-shaped feature, which Brown said is probably a remnant of a volcanic flow. Cassini radar imaged this fan-shaped feature, and also a large, circular feature that appears to be the source of the flow, in less detail on a previous flyby.

"The evidence is mounting that this circular feature is a volcano," said Rosaly Lopes, radar team member at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "With radar data alone, we identified it as a possible volcano, but the combination of radar and infrared makes it much clearer."

Clouds lie near the wrinkled, mountainous terrain in Titan's southern mid-latitudes. Their source has baffled scientists. "These clouds are probably methane droplets and may form when the air on Titan cools as it is pushed over the mountains by the Titanian winds," Brown said.

The new infrared images also clarify the composition of dunes that run across much of Titan. The dunes, built on water-ice bedrock, seem to consist of sand grains made of organics, Brown said.
-end-
I Infrared images of the mountains are on the Internet at http://www.nasa.gov/cassini, http://saturn.jpl.nasa.gov, and http://wwwvims.lpl.arizona.edu.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter was designed, developed and assembled at JPL.

The Visual and Infrared Mapping Spectrometer team is based at the University of Arizona, where this image was produced. Brown talked about the image this morning (Dec. 12) in a press conference at the American Geophysical Union meeting in San Francisco.

University of Arizona

Related Titan Articles from Brightsurf:

Life on Titan cannot rely on cell membranes, according to computational simulations
Researchers from Chalmers University of Technology, Sweden, have made a new contribution to the ongoing search into the possibility of life on Titan, Saturn's largest moon.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Nitrogen explosions created craters on Saturn moon Titan
Lakes of liquid methane on the surface of Titan, Saturn's largest moon, were likely formed by explosive, pressurized nitrogen just under the moon's surface, according to new research.

'Bathtub rings' around Titan's lakes might be made of alien crystals
The frigid lakeshores of Saturn's moon Titan might be encrusted with strange, unearthly minerals, according to new research being presented at the 2019 Astrobiology Science Conference, June 24-28, co-hosted by AGU and NASA in Bellevue, Wa.

SwRI scientist sheds light on Titan's mysterious atmosphere
A new Southwest Research Institute study tackles one of the greatest mysteries about Titan, one of Saturn's moons: the origin of its thick, nitrogen-rich atmosphere.

Astronomers find a cosmic Titan in the early universe
An international team of astronomers has discovered a titanic structure in the early universe, just two billion years after the Big Bang.

Unexpected atmospheric vortex behavior on Saturn's moon Titan
A new study led by a University of Bristol earth scientist has shown that recently reported unexpected behavior on Titan, the largest moon of Saturn, is due to its unique atmospheric chemistry.

Cassini's legacy and the atmospheric chemistry of Titan (video)
The Cassini-Huygens mission to Saturn, a collaboration between NASA and the European Space Agency, is set to end on Sept.

ALMA confirms complex chemistry in Titan's atmosphere
Saturn's frigid moon Titan has a curious atmosphere. In addition to a hazy mixture of nitrogen and hydrocarbons, like methane and ethane, Titan's atmosphere also contains an array of more complex organic molecules, including vinyl cyanide, which astronomers recently uncovered in archival ALMA data.

Scientists describe origins of topographic relief on Titan
Fluid erosion has carved river networks in at least three bodies in our solar system in the form of water on Earth and Mars and liquid hydrocarbons on Titan.

Read More: Titan News and Titan Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.