Nav: Home

Molecular pathway appears crucial in development of pulmonary fibrosis

December 12, 2007

A study led by Massachusetts General Hospital (MGH) researchers may have found a key mechanism underlying idiopathic pulmonary fibrosis (IPF), a usually fatal lung disease for which transplantation is the only successful treatment. The investigators found that a specific molecular pathway appears responsible for key aspects of the scarring of lung tissue that characterizes IPF, the cause of which is currently unknown. The results will appear in the January issue of Nature Medicine and have received early online release.

"Identifying the key role of this pathway in the development of fibrosis gives us an exciting new target for devising treatments," says Andrew Tager, MD, of the MGH Pulmonary and Critical Care Unit, who led the study. "An agent that blocks this pathway is already being developed as a potential cancer treatment, and we're hoping to be able to test it in our animal model of IPF to determine whether it might be a candidate for trials in patients."

About 50,000 new cases of IPF are diagnosed in the U.S. each year, primarily in people aged 50 to 75. While some patients may survive for extended periods, in others the diseases progresses rapidly, leading to death in an average of 3 to 5 years. Theories about the cause of IPF previously focused on chronic inflammation of the lungs, but recent evidence has suggested that an abnormal healing response to some sort of lung injury may be responsible.

The primary characteristic of IPF is scarring (fibrosis) of the lung surface, rendering it unable to transmit oxygen into the bloodstream. In any part of the body, scarring occurs when cells called fibroblasts, an important part of normal wound healing, make collagen to reinforce the healing matrix that forms over damaged tissue. Normally scarring is limited, but if too many fibroblasts travel to the site of an injury, large amounts of collagen can be deposited, producing excessive, fibrotic scarring. Fibroblasts are known to be present in affected lung tissue in IPF, and previous studies showed that the activity of factors that attract fibroblasts to the site of an injury rises with the severity of the disease. The current study was designed to determine which specific "chemoattractants" were associated with IPF, something not previously known.

Analysis of fluid from the lung surfaces of a mouse model of pulmonary fibrosis suggested that the activity of lysoposphatidic acid (LPA), acting through its receptor LPA1, was responsible for attracting fibroblasts in the disorder. This association was supported by the fact that a strain of mice lacking the gene for LPA1 did not develop pulmonary fibrosis when treated with a compound that usually causes the disease in the animals. Lung fluid samples from human IPF patients not only had significantly higher levels of LPA than control samples, laboratory tests showed that patient samples attracted fibroblasts while fluid from controls did not. In addition, an agent that blocks the LPA1 receptor eliminated the ability of fluid from IPF patients to attract fibroblasts.

"These results indicate that the LPA-LPA1 pathway is responsible for the abnormal migration of fibroblasts into the lungs in IPF, an absolutely crucial step in the development of fibrosis," says Andrew Luster, MD, PhD, senior author of the study. "This pathway appears to be involved in several steps in the development of fibrosis, including the leaking of blood vessels, which is why the LPA1 knockout mice are so dramatically protected. If we're right, then targeting this pathway should be a very exciting new therapeutic strategy for IPF." Luster is director of the MGH Center for Immunology and Inflammatory Disease (CIID) and a professor of Medicine at Harvard Medical School (HMS). Tager is also associated with the MGH CIID and has opened a clinic focused on pulmonary fibrosis and related lung diseases. He is an assistant professor of Medicine at HMS.
-end-
Additional co-authors of the study are Peter LaCamera, Barry Shea, Gabriele Campanella, John Wain, Banu Karimi-Shah, Nancy Kim, and William Hart, of the MGH; Moises Selman, National Institute for Respiratory Disorders, Mexico; Zhenwen Zhao, and Yan Xu, Indiana University School of Medicine; Vasiliy Polosukhin, and Timothy Blackwell, Vanderbilt University School of Medicine; Annie Pardo, National Autonomous University of Mexico; and Jerold Chun, Scripps Research Institute. The study was supported by grants from the Pulmonary Fibrosis Foundation, the American Lung Association, the Nirenberg Center for Advanced Lung Disease, the National Autonomous University of Mexico, and the U.S. National Institutes of Health.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Massachusetts General Hospital

Related Pulmonary Fibrosis Articles:

Bacterial protein fragment kills lung cells in pulmonary fibrosis, study finds
A bacterial protein fragment instigates lung tissue death in pulmonary fibrosis, a mysterious disease affecting millions of people worldwide, according to a new study from researchers at the University of Illinois at Urbana-Champaign and Mie University in Japan.
Closing in on liver fibrosis: Detailing the fibrosis process at unprecedented resolution
Today, there is no effective way to treat liver fibrosis.
Inhalation therapy shows promise against pulmonary fibrosis in mice, rats
A new study shows that lung stem cell secretions -- specifically exosomes and secretomes -- delivered via nebulizer, can help repair lung injuries due to multiple types of pulmonary fibrosis in mice and rats.
Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.
Short or long sleep associated with Pulmonary Fibrosis
Scientists have discovered that people who regularly sleep for more than 11 hours or less than 4 hours are 2-3 times more likely to have the incurable disease, pulmonary fibrosis, compared to those that sleep for 7 hours in a day.
Research points to possible target to treat idiopathic pulmonary fibrosis, or IPF
In a study of idiopathic pulmonary fibrosis, or IPF, recruited monocyte-derived macrophages with increased flux in their mevalonate pathway were able induce lung fibrosis in a mouse model without prior lung injury.
Researchers identify new therapeutic target for pulmonary fibrosis
Researchers in Japan have identified a genetic mutation that causes a severe lung disease called idiopathic pulmonary fibrosis (IPF) by killing the cells lining the lung's airways.
Promising steps towards a treatment for pulmonary fibrosis
Research published in the journal Science Translational Medicine on 25 September by members of the Cardiovascular Disease Mechanisms group at the MRC LMS in collaboration with Duke-NUS Medical School, National Heart Centre Singapore & National Heart and Lung Institute, Imperial College London, showed that blocking a protein called interleukin-11 (IL-11) using therapeutic antibodies can reverse the fibrosis in the lung.
African-Americans with COPD appear less likely to use pulmonary rehab
African-American patients with chronic obstructive pulmonary disease, or COPD, are less likely to participate in pulmonary rehabilitation programs than white patients, even when there are programs nearby.
CU Anschutz researchers discover important breakthrough in pulmonary fibrosis
A team of investigators led by members of the University of Colorado School of Medicine faculty at CU Anschutz Medical Campus has identified a connection between mucus in the small airways and pulmonary fibrosis.
More Pulmonary Fibrosis News and Pulmonary Fibrosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.