Nav: Home

How size matters

December 12, 2007

The beauty of nature is partly due to the uniformity of leaf and flower size in individual plants, and scientists have discovered how plants arrive at these aesthetic proportions.

Researchers at the John Innes Centre in Norwich have discovered that cells at the margins of leaves and petals play a particularly important role in setting their size.

"The remarkable uniformity of leaves and flowers helps us to tell different species apart, such as daisies and marguerites, which look very similar otherwise. We are now uncovering how the genetic blueprint of a species tightly controls the size of leaves and flowers", says Dr. Michael Lenhard, who led the research.

The cells at the margins seem to secrete a mobile growth signal that keeps the cells throughout the leaf dividing. The more of this signal is produced, the larger the leaves and flowers get.

Surprisingly, this signal seems to be distinct from the classical and well-studied plant hormones that are known to influence growth and development.

"As the signal only seems to come in from the margins, we suggest it gets diluted as the leaf or petal grows. Once the concentration falls below a certain threshold, the cells in the leaf or petal stop dividing. This would be a simple way of measuring the size of a growing organ", says Dr. Lenhard. "It's a bit like adding more and more tonic to a gin and tonic until you can no longer taste the gin."

Strikingly, animals seem to use the same principle of dilution for measuring size, for example of the wings in a fly, although the molecules used are very different.

Efforts are under way to use this discovery to increase leaf growth in biofuel crops for the generation of sustainable energy and to boost the yield of fruits and seeds.
-end-
This research was performed in collaboration with Dr Christian Fleck and his group at the Physics Department, University of Freiburg, Germany, and was funded by the Deutsche Forschungsgemeinschaft and the BBSRC. It will be published in Developmental Cell on 3 December, 12:00 PM Noon Eastern Time US.

Norwich BioScience Institutes

Related Species Articles:

Directed species loss from species-rich forests strongly decreases productivity
At high species richness, directed loss, but not random loss, of tree species strongly decreases forest productivity.
What is an endangered species?
What makes for an endangered species classification isn't always obvious.
One species, many origins
In a paper published in Nature Ecology and Evolution, a group of researchers argue that our evolutionary past must be understood as the outcome of dynamic changes in connectivity, or gene flow, between early humans scattered across Africa.
Species on the move
A total of 55 animal species in the UK have been displaced from their natural ranges or enabled to arrive for the first time on UK shores because of climate change over the last 10 years (2008-2018) -- as revealed in a new study published today by scientists at international conservation charity ZSL (Zoological Society of London).
Chasing species' 'intactness'
In an effort to better protect the world's last ecologically intact ecosystems, researchers developed a new metric called 'The Last of the Wild in Each Ecoregion' (LWE), which aimed to quantify the most intact parts of each ecoregion.
How do species adapt to their surroundings?
Several fish species can change sex as needed. Other species adapt to their surroundings by living long lives -- or by living shorter lives and having lots of offspring.
Five new frog species from Madagascar
Scientists at Ludwig-Maximilians-Universitaet in Munich and the Bavarian State Collection of Zoology have named five new species of frogs found across the island of Madagascar.
How new species arise in the sea
How can a species split into several new species if they still live close to each other and are able to interbreed?
How new species emerge
International research team reconstructs the evolutionary history of baboons.
What makes two species different?
For most of the 20th century, scientists believed that the reproductive incompatibility between species evolved gradually as a by-product of adapting to different environments.
More Species News and Species Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.