Nav: Home

Why the switch stays on

December 12, 2007

Cellular processes, such as when to multiply, are often regulated by switches that control the frequency and timing of interactions between proteins. North Carolina State University scientists have discovered the way in which a specific protein-protein interaction prevents the cell from turning one of its switches off, leading to uncontrolled cell proliferation - one of the hallmarks of cancer.

In a paper published in the December 2007 edition of the Cell Press journal Structure, the NC State researchers show for the first time that the interaction between a rogue version of a specific protein called Ras and its binding partner protein Raf can block the switch from being turned off.

The paper shows, says Dr. Carla Mattos, NC State associate professor of structural and molecular biochemistry and the lead author of the paper, that Raf secures one of the two so-called switch regions in Ras, so that the second switch can act like a closed door that isolates the key area where the overall signal switch is located. Mattos likens the abnormal protein-protein interaction to having the light permanently stuck on because the switch is inaccessible behind the closed door.

In the world of molecular biochemistry, Mattos explains, instructions for the proliferation of cells are given by cascades of protein-protein interactions controlled by on-off switches. The switch is on when the proteins can interact - resulting in cell proliferation - and off when they cannot. If access to the switch is blocked and the switch is stuck on, cells begin to multiply incessantly.

There are 20 existing amino acids that can be joined into chains that make up proteins. Each protein has a unique sequence of amino acids. In the chain of 189 amino acids of which Ras is composed, the position in question is at the 61st amino acid, which is normally a glutamine known to help in turning the interaction switch off. Change, or mutation, of this amino acid to an amino acid called leucine is a commonly observed defect in cancer cells.

"The switch only gets stuck on when Raf is present and the defective Ras has position 61 as a leucine or one of the few amino acids shown to cause cell transformation, one of the properties observed in cancer," Mattos says. "For glutamine or the mutations that do not cause cell transformation, the molecular door can fly open and allow access to the switch - even when Raf is bound to Ras. The door can always open in the absence of Raf."

The paper responds to a paradox that arose in the 1980s when scientists compared the behavior of Ras mutants in cells versus in solution, isolated from other cellular components including Raf. The studies of Ras in solution suggested nothing special about the mutations that cause cell transformation versus those that do not, as any amino acid other than glutamine at position 61 made turning off the Ras switch only 10 times slower, rather than blocking the switch. Scientists did not understand why the isolated Ras mutants behaved differently than the Ras mutants in their cellular environment.

Mattos, research associate Greg Buhrman and undergraduate student Glenna Wink provide the answer to this paradox by showing that the switch stays on when Raf binds Ras containing the leucine mutation and that it can be turned off in the absence of Raf, although not at the normal rate. In normal Ras the switch can be turned off either in the presence or absence of Raf. The atomic resolution structures of the rogue Ras proteins with strongly transforming mutations show that they all keep the molecular door closed and the switch on in the same way. The structures of the normal Ras and of a mutant known to have weak transforming ability both have the molecular door open.

"We all knew that there had to be something in the cell not accounted for by the studies in isolated Ras," Mattos says. "We now know that at least part of that something is the Raf protein. When the defective Ras encounters Raf, the switch becomes inaccessible and the highly controlled cell proliferation system is broken, leading to uncontrolled cell proliferation and cancer."
-end-
The study was funded by the National Institutes of Health.

Note to editors: An abstract of the paper follows.

"Transformation Efficiency of Q61 Ras Mutants Linked to Structural Features of the Switch Regions in the Presence of Raf"

Authors: Greg Buhrman, Glenna Wink and Carla Mattos, North Carolina State University Published: December 2007 in Structure

Abstract: Transformation efficiencies of Ras mutants at residue 61 range over three orders of magnitude, but the in vitro GTPase activity decreases 10-fold for all mutants. We show that Raf impairs the GTPase activity of RasQ61L, suggesting that the Ras/Raf complex differentially modulates transformation. Our crystal structures show that in transforming mutants, switch II takes part in a network of hydrophobic interactions burying the nucleotide and pre-catalytic water molecule. Our results suggest that Y32 and a water molecule bridging it to the gamma-phosphate in the wild type structure play a role in GTP hydrolysis in lieu of the Arg finger in the absence of GAP. The bridging water molecule is absent in the transforming mutants, contributing to the burying of the nucleotide. We propose a mechanism for intrinsic hydrolysis in Raf-bound Ras and elucidate structural features in the Q61 mutants that correlate with their potency to transform cells.

North Carolina State University

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.