Nav: Home

New technique could dramatically lower costs of DNA sequencing

December 12, 2007

CHAMPAIGN, Ill. -- Using computer simulations, researchers at the University of Illinois have demonstrated a strategy for sequencing DNA by driving the molecule back and forth through a nanopore capacitor in a semiconductor chip. The technique could lead to a device that would read human genomes quickly and affordably.

Being able to sequence a human genome for $1,000 or less (which is the price most insurance companies are willing to pay) could open a new era in personal medicine, making it possible to precisely diagnose the cause of many diseases and tailor drugs and treatment procedures to the genetic make-up of an individual.

"Despite the tremendous interest in using nanopores for sequencing DNA, it was unclear how, exactly, nanopores could be used to read the DNA sequence," said U. of I. physics professor Aleksei Aksimentiev. "We now describe one such method."

Aksimentiev and collaborators describe the method in a paper accepted for publication in the journal Nano Letters, and posted on the journal's Web site.

"Through molecular dynamics simulations, we demonstrate that back-and-forth motion of a DNA molecule in a nanopore capacitor 1 nanometer in diameter produces an electrostatic fingerprint that can be used to read the genetic sequence," said Aksimentiev, who also is a researcher at the Beckman Institute.

In the researchers' simulations, performed at the university's National Center for Supercomputing Applications, the nanopore capacitor consists of two conducting layers of doped silicon, separated by an insulating layer of silicon dioxide.

As DNA passes through the nanopore, the molecule's electric field induces sequence-specific electrostatic potentials that can be detected at the top and bottom layers of the capacitor membrane.

A semiconductor device capable of reading the electrostatic potentials and decoding the genetic sequence is within the grasp of current technology, Aksimentiev said.

"Nanometer pores in electronic membranes have been manufactured, and the voltage signals resulting from DNA movement through such pores have been recorded." The next big challenge, Aksimentiev said, is to minimize noise in the system, and reduce the speed of DNA molecules moving through the pore.
-end-
With Aksimentiev, co-authors of the paper are postdoctoral research associate and lead author Grigori Sigalov, electrical and computer engineering professor Gregory Timp and graduate student Jeffrey Comer.

The work was funded by the National Institutes of Health and the University of Illinois.

University of Illinois at Urbana-Champaign

Related Nanopores Articles:

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable
An international research team has for the first time investigated the optical properties of three-dimensional nanoporous graphene at the IRIS infrared beamline of the BESSY II electron storage ring.
Is this the 'holey' grail of batteries?
In a battery system, electrodes containing porous graphene scaffolding offer a substantial improvement in both the retention and transport of energy, a new study reveals.
Nanopores could map small changes in DNA that signal big shifts in cancer
Detecting cancer early, just as changes are beginning in DNA, could enhance diagnosis and treatment as well as further our understanding of the disease.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
Nanotechnology and nanopore sequencing
DNA is the hereditary material in our cells and contains the instructions for them to live, behave, grow, and develop.
More Nanopores News and Nanopores Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...