Climate's remote control on hurricanes

December 12, 2007

Virginia Key, Fla. -- Natural climate variations, which tend to involve localized changes in sea surface temperature, may have a larger effect on hurricane activity than the more uniform patterns of global warming, a report in this week's Nature suggests.

In the debate over the effect of global warming on hurricanes, it is generally assumed that warmer oceans provide a more favorable environment for hurricane development and intensification. However, several other factors, such as atmospheric temperature and moisture, also come into play.

Drs. Gabriel A. Vecchi of the NOAA Geophysical Fluid Dynamics Laboratory and Brian J. Soden from the University of Miami Rosenstiel School of Marine & Atmospheric Science analyzed climate model projections and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone 'potential intensity' - a measure that provides an upper limit on cyclone intensity.

They found that warmer oceans do not alone produce a more favorable environment for storms because the effect of remote warming can counter, and sometimes overwhelm, the effect of local surface warming. "Warming near the storm acts to increase the potential intensity of hurricanes, whereas warming away from the storms acts to decrease their potential intensity," Vecchi said.

Titled "Effect of Remote Sea Surface Temperature Change on Tropical Cyclone Potential Intensity," their study found that long-term changes in potential intensity are more closely related to the regional pattern of warming than to local ocean temperature change. Regions that warm more than the tropical average are characterized by increased potential intensity, and vice versa. "A surprising result is that the current potential intensity for Atlantic hurricanes is about average, despite the record high temperatures of the Atlantic Ocean over the past decade." Soden said. "This is due to the compensating warmth in other ocean basins."

"As we try to understand the future changes in hurricane intensity, we must look beyond changes in Atlantic Ocean temperature. If the Atlantic warms more slowly than the rest of the tropical oceans, we would expect a decrease in the upper limit on hurricane intensity," Vecchi added. "This is an interesting piece of the puzzle."

"While these results challenge some current notions regarding the link between climate change and hurricane activity, they do not contradict the widespread scientific consensus on the reality of global warming," Soden noted.
-end-
About the Rosenstiel School

Founded in the 1940's, the University of Miami's Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

About NOAA Geophysical Fluid Dynamics Laboratory

The goal of NOAA's GFDL research is to understand and predict the Earth's climate and weather, including the impact of human activities. GFDL conducts leading edge research on many topics including weather and hurricane forecasts, El Niño prediction, stratospheric ozone depletion, and climate change. For more information, please visit www.gfdl.noaa.gov.

University of Miami Rosenstiel School of Marine & Atmospheric Science

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.