Whispering bats are 100 times louder than previously thought

December 12, 2008

Annemarie Surlykke from the University of Southern Denmark is fascinated by echolocation. She really wants to know how it works. Surlykke equates the ultrasound cries that bats use for echolocation with the beam of light from a torch: you won't see much with the light from a small bulb but you could see several hundred metres with a powerful beam. Surlykke explains that it's the same with echolocating bats. Some have big powerful calls for perception over a long range, while others are said to whisper; which puzzled Surlykke. How could 'whispering' bats echolocate with puny 70decibel cries that barely carry at all? Teaming up with her long time collaborator Elizabeth Kalko from the Smithsonian Tropical Research Institute and student Signe Brinkløv, Surlykke decided to measure the volume of a pair of whispering bat species' calls to find out how loud the whisperers are. They publish their discovery that whispering bats are really shrieking in The Journal of Experimental Biology on 12th December 2008 at http://jeb.biologists.org.

Travelling to the Smithsonian Research Institute's Barro Colorado Island in Panama, Surlykke decided to focus on two whispering members of the Phyllostomidae family: Artibeus jamaicensis and Macrophyllum macrophyllum. According to Surlykke, the Phyllostomidae family of bats are unique because of their remarkably diverse lifestyles and diets. Some feed on fast moving insects while others feast on fruit buried in trees, making them an ideal family to study to find out how echolocation works.

But measuring the volume of the bat's echolocation calls was extremely challenging. If Surlykke was going to get true volume measurements from hunting bats on the wing, she would have to be certain that the bats were facing head on and that she could measure their distance from the microphone that recorded the sound so that she could correct for the volume lost as the call travelled to the microphone. Setting up an array of four microphones, the team recorded 460 cries, which Surlykke eventually whittled down to 31 calls for M. macrophyllum and 19 for A. jamaicensis that she could use.

Correcting the volume measurements, Surlykke was delighted to find that far from whispering, the bats were shrieking. The tiny insectivore M. macrophyllum registered a top volume of 105decibel, while fruit feeding A. jamaicensis broke the record at 110decibel, a remarkable 100 times louder than a 70decibel bat whisper and almost twice as loud as A. jamaicensis.

Surlykke suspects that she can explain the differences in the animals' volumes by their different lifestyles. She explains that the relatively large A. jamaicensis feeds on fruit, which it probably locates through a combination of senses, including smell and short-range echolocation whispers. But the bats have to search over large areas to find fruiting trees, and Surlykke suspects that the bat uses its high volume, well-carrying shrieks for orientation in their complex forest environment.

However, tiny M. macrophyllum's lifestyle is completely different. They hunt for insects over water, scooping them up with their tail. Surlykke says that she suspected that M. macrophyllum would be louder because she couldn't see how the animals could locate moving insects with a low intensity echolocation call, but admits that she was amazed that they were so much louder and that they could also adjust the volume to match their prey.
-end-
IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Brinkløv, S., Kalko, E. K. V. and Surlykke, A. (2009). Intense echolocation calls from two 'whispering' bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). J. Exp. Biol. 212, 11-20.

Full text of the article is available ON REQUEST. To obtain a copy contact Kathryn Phillips, The Journal Of Experimental Biology, Cambridge, UK. Tel: +44 (0)1223 425525 or email kathryn@biologists.com

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT kathryn@biologists.com

THIS ARTICLE APPEARS IN THE JOURNAL OF EXPERIMENTAL BIOLOGY ISSUE: 12th December 2008. EMBARGOED UNTIL FRIDAY, 12th December 2008, 00.15 HRS EST (05:15 HRS GMT)

The Company of Biologists

Related Bats Articles from Brightsurf:

These masked singers are bats
Bats wear face masks, too. Bat researchers got lucky, observing wrinkle-faced bats in a lek, and copulating, for the first time.

Why do bats fly into walls?
Bats sometimes collide with large walls even though they detect these walls with their sonar system.

Vampire bats social distance when they get sick
A new paper in Behavioral Ecology finds that wild vampire bats that are sick spend less time near others from their community, which slows how quickly a disease will spread.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

The genetic basis of bats' superpowers revealed
First six reference-quality bat genomes released and analysed

Bats offer clues to treating COVID-19
Bats carry many viruses, including COVID-19, without becoming ill. Biologists at the University of Rochester are studying the immune system of bats to find potential ways to ''mimic'' that system in humans.

A new social role for echolocation in bats that hunt together
To find prey in the dark, bats use echolocation. Some species, like Molossus molossus, may also search within hearing distance of their echolocating group members, sharing information about where food patches are located.

Coronaviruses and bats have been evolving together for millions of years
Scientists compared the different kinds of coronaviruses living in 36 bat species from the western Indian Ocean and nearby areas of Africa.

Bats depend on conspecifics when hunting above farmland
Common noctules -- one of the largest bat species native to Germany -- are searching for their fellows during their hunt for insects above farmland.

Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.

Read More: Bats News and Bats Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.