Canadian scientists identify a spontaneously chain-reacting molecule

December 12, 2010

In the burgeoning field of nano-science there are now many ways of 'writing' molecular-scale messages on a surface, one molecule at a time. The trouble is that writing a molecule at a time takes a very long time.

"It is much better if the molecules can be persuaded to gather together and imprint an entire pattern simultaneously, by themselves. One such pattern is an indefinitely long line, which can then provide the basis for the ultimately thin molecular 'wire' required for nano-circuitry," says John Polanyi of the University of Toronto's Department of Chemistry, co- author of the paper to be published on Nature Chemistry this week.

The paper describes, for the first time, a simple molecule that each time it chemically reacts with a surface prepares a hospitable neighbouring site at which the next incoming molecule reacts. Accordingly, these molecules, when simply dosed (blindly) on the surface, spontaneously grow durable 'molecular-chains'. These molecular chains are the desired prototypes of nano-wires.

The experiments were conducted by graduate student Tingbin Lim in the John Polanyi Scanning Tunneling Microscopy laboratory at U of T, in conjunction with theory performed by postdoctoral fellow Dr. Wei Ji in the Hong Guo laboratory in the Department of Physics, McGill University. The experiments in Toronto yielded visual evidence of the chains, and the theory at McGill explained why the chains spontaneously grew.

"Early-on, far-sighted Xerox Research Centre Canada (XRCC) recognized this opportunity for imprinting patterns at the molecular scale, thereby persuading Ontario Centres of Excellence (OCE) and the federal Natural Sciences and Engineering Research Council (NSERC), through its Strategic Grant program, to fund the bulk of the research costs in our lab," says Polanyi.

"The experiments constituted the doctoral work of a recent PhD student in the Toronto laboratory, Dr. Tingbin Lim an outstanding student who came from Singapore to join our group and now makes his home as a scientist in Canada."
Dr. Wei Ji who did much of the calculations at McGill has returned to his native China where he has been appointed a full Professor. He remains in close collaborative touch with his colleagues at McGill and also in Toronto, to the benefit of all three locales.

The paper, entitled "Surface-mediated chain reaction through dissociative attachment" will be published on Nature Chemistry's website on December 12 at 1 pm Eastern time.

Authors are John C. Polanyi and Tingbin Lim of U of T's Department of Chemistry and Institute of Optical Science and Jong Guo and Wei Ji of the Centre for the Physics of Materials and the Department of Physics, McGill University.

The research was supported by the NSERC, Photonics Research Ontario (PRO), an Ontario Centre of Excellence (OCE), the Canadian Institute for Photonic Innovation (CIPI), the Xerox Research Centre Canada (XRCC), Fonds de Recherche sur la Nature et les Technologies (FQRNT) of Quebec and the Canadian Institute for Advanced Research (CIFAR).

University of Toronto

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to