Salt-tolerant crops show higher capacity for carbon fixation

December 12, 2011

MURCIA, SPAIN--Salt can have drastic effects on the growth and yield of horticultural crops; studies have estimated that salinity renders an about one-third of the world's irrigated land unsuitable for crop production. Imbalances in soil salinity can cause ion toxicity, osmotic stress, mineral deficiencies, and drastic physiological and biochemical changes in plants. Salt stress can even cause plants to adjust their water usage--to conserve water, some plants close their stomata, thus restricting the entry of carbon dioxide (CO2) into the leaf and reducing photosynthesis.

One solution to salinity issues has been to boost the salt tolerance of conventional crops and plants, but resulting gain in crop yield has traditionally been low. To better understand the behavior of salt-tolerant and -sensitive plants in challenging situations, scientists performed a comparative study of carbon fixation by different plant species under conditions of salinity. Tomato, lettuce, pepper, melon, and watermelon were tested in a greenhouse in southeast Spain. The net photosynthetic rate, gS, and transpiration rate of the plants were measured at atmospheric CO2 during the daytime and were related to the total chlorophyll, carbon, and mineral contents of each species.

According to the research study (HortScience), melon or pepper crops showed significantly lower photosynthetic rates when they were grown in saline conditions. The total chlorophyll content and carbon percentage were also lower in the salinity-treated plants of melon and pepper. Treated lettuce plants showed a significant decrease in photosynthetic rates and chlorophyll content, but there were no differences in carbon content. "On the other hand, there were no significant differences in the values of total chlorophyll content, photosynthetic rate, or carbon content for tomato and watermelon plants when control and salt-treated plants were compared", the report said. The mineral composition data showed greater increases of sodium in both roots and leaves of melon and pepper when plants were treated with NaCl compared with the rest of the species.

"Almost all of the results obtained showed that lettuce, pepper, and melon are less adapted to saline conditions and that these crops seem to be less efficient in CO2 fixation and, therefore, have less capacity for carbon accumulation", noted corresponding author Micaela Carvajal. "We concluded that the species more tolerant of saline conditions (tomato and watermelon) showed a higher capacity for fixation of atmospheric CO2 than the sensitive species (lettuce, melon, and pepper). These results seem to be related to the capacity of each species to maintain the photosynthetic processes and gS in stressing situations."
-end-
The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/12/1798

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

American Society for Horticultural Science

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.