Scientists discover new way to target cancer

December 12, 2011

Scientists have discovered a new way to target cancer through manipulating a master switch responsible for cancer cell growth.

The findings, published today [12 Dec] in the journal Cancer Cell, reveal how cancer cells grow faster by producing their own blood vessels.

Cancer cells gain the nutrients they need by producing proteins that make blood vessels grow, helping deliver oxygen and sugars to the tumour. These proteins are vascular growth factors like VEGF -- the target for the anti-cancer drug Avastin. Making these proteins requires the slotting together of different parts of genes, a process called splicing.

Scientists at UWE Bristol and the University of Bristol discovered that mutations in one specific cancer gene can control how splicing is balanced, allowing a master switch in the cell to be turned on. This master switch of splicing makes cancer cells grow faster, and blood vessels to grow more quickly, as they alter how VEGFs are put together.

In experimental models, the researchers found that by using new drugs that block this master switch they prevented blood vessel growth and stopped the growth of cancers.

Dr Michael Ladomery spearheading the work from UWE Bristol, said: "The research clearly demonstrates that it may be possible to block tumour growth by targeting and manipulating alternative splicing in patients, adding to the increasingly wide armoury of potential anti-cancer therapies."

Professor David Bates who led the team from the University of Bristol's School of Physiology and Pharmacology, said: "This enables us to develop new classes of drugs that target blood vessel growth, in cancer and other diseases like blindness and kidney disease."

The work, which started on kidney cancer, also involved groups at Southmead Hospital, where patients with kidney disease helped by allowing tissues that had been removed during surgery to be used in the research.

Professor Steve Harper, Consultant Nephrologist and part of the research team, said: "This shows how important it is for patients, doctors and scientists to come together in an excellent environment like Bristol to make these groundbreaking discoveries."

Professor Moin Saleem, Consultant Pediatric Nephrologist, whose lab helped to make the cells used, added: "We are really grateful to the patients who allowed their cells to be used in this research, as we hope it will eventually help the development of new drugs."
-end-
The paper, entitled 'WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing', is published today in Cancer Cell. The research was sponsored by a UWE Bristol Faculty PhD studentship, which funded Elianna Amin, the first author on the paper, and by University of Bristol research grants from the British Heart Foundation, Cancer Research UK, Wellcome Trust, Medical Research Council Fight for Sight and the Skin Cancer Research Fund.

University of Bristol

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.