24-armed giant to probe early lives of galaxies

December 12, 2012

The K-band Multi-Object Spectrograph (KMOS), attached to the Very Large Telescope (VLT) Unit Telescope 1 at ESO's Paranal Observatory in Chile, has successfully achieved first light. During the four-month period from August this 2.5-tonne instrument had been shipped from Europe, reassembled, tested and installed following months of careful planning. This was the culmination of many years of design and construction by teams in the UK and Germany, and at ESO. KMOS is the second of the second generation of instruments to be installed on ESO's VLT (the first was X-shooter: see eso0920 -- http://www.eso.org/public/news/eso0920/).

"KMOS will bring an exciting new capability to the suite of instrumentation at the ESO VLT. Its initial success is a tribute to the dedication of a large team of engineers and scientists. The team looks forward to many future scientific discoveries with KMOS once the instrument commissioning is fully complete," says Ray Sharples (University of Durham, UK), co-principal investigator of KMOS.

To study the early lives of galaxies astronomers need three things: to observe in the infrared [1], to observe many objects at once and, for each one, to map out how their properties vary from place to place [2]. KMOS can do all of these things -- at the same time. Up to now astronomers could either observe many objects at once, or map a single object in detail. A detailed survey might take years for a large sample of objects. But with KMOS, by mapping the properties of many objects simultaneously, such surveys can now be completed in just months.

KMOS has robot arms that can be positioned independently in just the right place to catch the light from 24 distant galaxies, or other objects, simultaneously. Each arm in turn places a 14 by 14 pixel grid on top of the object and each of these 196 points collects light from different parts of the galaxy and splits it into its component colours as a spectrum. These weak signals are then recorded by very sensitive infrared detectors. This extraordinarily complex instrument has more than one thousand optical surfaces that had to be manufactured to high accuracy and carefully aligned [3].

"I remember, eight years ago, when the project started how I was sceptical about the complexity of KMOS. But today we are observing and the instrument is performing wonderfully," says Jeff Pirard, the ESO staff member responsible for the instrument. "Moreover, it has been a real pleasure to work together with the KMOS team. They are very professional and we had a great time working together."

KMOS was designed and built by a consortium of institutes working in partnership with ESO. These are: Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham, UK, Universitats-Sternwarte Munchen, Munich, Germany, the Science and Technology Facilities Council's UK Astronomy Technology Centre, Royal Observatory, Edinburgh, UK, Max-Planck-Institut fur Extraterrestrische Physik, Garching, Germany, Sub-Department of Astrophysics, University of Oxford, Oxford, UK.

"I am excited about the fantastic opportunities KMOS offers to study distant galaxies. The possibility to observe 24 galaxies simultaneously will allow us to build galaxy samples of unprecedented size and quality. The collaboration among all partners and ESO could not have been better and I am very grateful to everybody who contributed to the construction of KMOS," concludes Ralf Bender (Universitats-Sternwarte Munchen and Max-Planck-Institut fur Extraterrestrische Physik, Germany), co-principal investigator.

[1] The expansion of the Universe shifts light to longer wavelengths. This means that much of the light from distant galaxies of interest to astronomers is shifted from visible-light wavelengths to the longer infrared wavelengths. To study galaxy evolution infrared instruments are vital.

[2] This technique, known as integral-field spectroscopy, allows astronomers to simultaneously study the properties of different parts of an object such as a galaxy to see how it is rotating and measure its mass. It also allows the chemical composition and other physical properties to be determined in different parts of the object.

[3] Most of the complex mechanisms in KMOS have to operate at -140 degrees Celsius, which creates major engineering challenges.

More information

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".


Overview of the VLT instruments: http://www.eso.org/public/images/vlt/

Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

KMOS information at the University of Durham: http://www.dur.ac.uk/cfai/projects/kmos/

KMOS information at USM: http://www.usm.uni-muenchen.de/people/wegner/kmos/en/index.php

KMOS science pages at ESO: http://www.eso.org/sci/facilities/develop/instruments/kmos.html


Ray Sharples
University of Durham
Durham, UK
Tel: 44-191-334-3719
Email: r.m.sharples@durham.ac.uk

Ralf Bender
Universitäts-Sternwarte München and Max-Planck-Institut für Extraterrestrische Physik
Munich, Germany
Tel: 49-89-2180-5999
Email: bender@usm.lmu.de

Suzanne Ramsay
Garching bei München, Germany
Tel: 49-89-3200-6665
Email: sramsay@eso.orgRichard Hook
ESO, La Silla, Paranal, E-ELT & Survey Telescopes Press Officer
Garching bei München, Germany


Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.