Ancient Australian fossils were on land, not at sea, geologist proposes

December 12, 2012

EUGENE, Ore. -- (Dec. 12, 2012) -- Ancient multicellular fossils long thought to be ancestors of early marine life are remnants of land-dwelling lichen or other microbial colonies, says University of Oregon scientist Gregory Retallack, who has been studying fossil soils of South Australia.

Ediacaran (pronounced EDI-akran) fossils date to 542-635 million years ago. They've been considered fossil jellyfish, worms and sea pens, but are preserved in ways distinct from marine invertebrate fossils. The fossils -- first discovered in 1946 in Australia's Ediacara Hills -- are found in iron-colored impressions similar to plant fossils and microbes in fossil soils.

Retallack, a native of Australia, examined ancient Ediacaran soils with an array of state-of-the-art chemical and microscopic techniques, including an electron microprobe and scanning electron microscope in the UO's CAMCOR Microanalytical Facility headed by John Donovan and rock-analysis technology in the UO's stable isotope laboratory of Ilya Bindeman.

The soils with fossils, Retallack writes in his study, "are distinguished by a surface called 'old elephant skin,' which is best preserved under covering sandstone beds." The healed cracks and lumpy appearance of sandy "old elephant skin" are most like the surface of microbial soil crusts in modern deserts.

"This discovery has implications for the tree of life, because it removes Ediacaran fossils from the ancestry of animals," said Retallack, professor of geological sciences and co-director of paleontological collections at the UO's Museum of Natural and Cultural History. His evidence, mostly gathered from a site in the Flinders Ranges, is presented in a paper placed online ahead of print by the journal Nature.

"These fossils have been a first-class scientific mystery," he said. "They are the oldest large multicellular fossils. They lived immediately before the Cambrian evolutionary explosion that gave rise to familiar modern groups of animals."

Retallack studied numerous Ediacaran fossils and determined that the diversity reflects a preference by the ancient organisms for "unfrozen, low salinity soils, rich in nutrients, like most terrestrial organisms." Thus the fossils in Australia's iconic red-rock ranges, he concludes, were landlubbers. In his closing paragraph, Retallack outlines implications for a variety of other Edicaran fossils, that could have been lichens, other microbial consortia, fungal fruiting bodies, slime molds, flanged pedestals of biological soil crusts, and even casts of needle ice.

Ediacaran fossils, he said, represent "an independent evolutionary radiation of life on land that preceded by at least 20 million years the Cambrian evolutionary explosion of animals in the sea." Increased chemical weathering by large organisms on land may have been needed to fuel the demand of nutrient elements by Cambrian animals. Independent discoveries of Cambrian fossils comparable with Ediacaran ones is evidence, he said, that even in the Cambrian, more than 500 million years ago, life on land may have been larger and more complex than life in the sea.

Retallack leaves open the possibility that some Ediacaran fossils found elsewhere in the world may not be land-based in origin, writing in his conclusion that the many different kinds of these fossils need to be tested and re-evaluated.

"The key evidence for this new view is that the beds immediately below the cover sandstones in which they are preserved were fossil soils," he said. "In other words the fossils were covered by sand in life position at the top of the soils in which they grew. In addition, frost features and chemical composition of the fossil soils are evidence that they grew in cold dry soils, like lichens in tundra today, rather than in tropical marine lagoons."

Fossil soils are usually recognized from root traces, soil horizons and soil structures, but in rocks of Ediacaran age, before the advent of rooted plants, only the second two criteria can be used to recognize fossil soils. Ediacaran fossil soils, Retallack said, represent ecosystems less effective at weathering than the modern array of ecosystems, so that soil horizons and soil structures are not as well developed as they are in modern soils.

"The research conducted by Dr. Retallack helps to unravel the mystery of very ancient life on Earth," said Kimberly Andrews Espy, UO vice president for research and innovation, and dean of the graduate school. "It also serves as an example of how technology, some of it developed at the University of Oregon, can be used to analyze materials from anywhere in the world."
-end-
The American Chemical Society's Petroleum Research Fund supported the fieldwork.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Source: Gregory J. Retallack, professor of geological sciences, 541-346-4558, gregr@uoregon.edu

Links:

Retallack web page: http://pages.uoregon.edu/dogsci/doku.php?id=directory/faculty/greg/about

Department of Geological Sciences: http://pages.uoregon.edu/dogsci/doku.php

Bindeman lab: http://blogs.uoregon.edu/bindeman/

CAMCOR Microanalytical Facility: http://camcor.uoregon.edu/microanalytical/

Museum of Natural and Cultural History: http://natural-history.uoregon.edu/

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Note: The University of Oregon is equipped with an on-campus television studio with satellite uplink capacity, and a radio studio with an ISDN phone line for broadcast-quality radio interviews. Call the Media Contact above to begin the process.

University of Oregon

Related Fossils Articles from Brightsurf:

First exhaustive review of fossils recovered from Iberian archaeological sites
The Iberian Peninsula has one of the richest paleontological records in Western Europe.

Fossils reveal mammals mingled in age of dinosaurs
A cluster of ancient mammal fossils discovered in western Montana reveal that mammals were social earlier than previously believed, a new study finds.

Oldest monkey fossils outside of Africa found
Three fossils found in a lignite mine in southeastern Yunan Province, China, are about 6.4 million years old, indicate monkeys existed in Asia at the same time as apes, and are probably the ancestors of some of the modern monkeys in the area, according to an international team of researchers.

Scientists prove bird ovary tissue can be preserved in fossils
A research team led by Dr. Alida Bailleul from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences has proved that remnants of bird ovaries can be preserved in the fossil record.

Biosignatures may reveal a wealth of new data locked inside old fossils
Step aside, skeletons -- a new world of biochemical ''signatures'' found in all kinds of ancient fossils is revealing itself to paleontologists, providing a new avenue for insights into major evolutionary questions.

Fish fossils become buried treasure
Rare metals crucial to green industries turn out to have a surprising origin.

New Argentine fossils uncover history of celebrated conifer group
Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.

Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.

Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.

Read More: Fossils News and Fossils Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.