Using air transportation data to predict pandemics

December 12, 2013

Computational work conducted at Northwestern University has led to a new mathematical theory for understanding the global spread of epidemics. The resulting insights could not only help identify an outbreak's origin but could also significantly improve the ability to forecast the global pathways through which a disease might spread.

"With this new theory, we can reconstruct outbreak origins with higher confidence, compute epidemic-spreading speed and forecast when an epidemic wave front is to arrive at any location worldwide," said theoretical physicist Dirk Brockmann, who developed the ideas for this research at the Northwestern Institute on Complex Systems (NICO). "This may help to improve possible mitigation strategies."

Brockmann, currently a professor at Berlin's Humboldt-Universitaet, worked with fellow scientist Dirk Helbing, a professor at ETH Zurich, to develop the theory. Brockmann was an associate professor of engineering sciences and applied mathematics at Northwestern's McCormick School of Engineering and Applied Science before moving to Germany this year.

Their study will be published Dec. 13 in the journal Science.

Brockmann and Helbing's new approach for understanding global disease dynamics is based on the intuitive notion that in our strongly connected world, conventional geographic distances are no longer the key variable but must be replaced with "effective distances."

"From the perspective of Frankfurt, Germany, other metropolitan areas such as London, New York or Tokyo are effectively not more distant than geographically close German cities such as Bremen, Leipzig or Kiel," said Brockmann, who also has a joint appointment at the Robert Koch Institute in Berlin.

When an unknown virus emerges at various locations in the world, scientists focus on answering the following questions: Where did the new disease originate? Where are new cases to be expected? When are they expected? And how many people will catch the disease?

In order to contain the further spread -- and potentially devastating consequences -- rapid assessment is essential for the development of efficient mitigation strategies. Highly sophisticated computer simulations, which attempt to predict the likely epidemic time-course and spreading pattern, are important tools for forecasting different scenarios.

Such computer simulations, however, are very demanding in terms of computer time. They also require knowledge of disease-specific parameters that are typically not known for new, emergent infectious diseases.

In their work, the researchers show that effective distances can be computed from the traffic intensities in the worldwide air transportation network. "If the flow of passengers from point A to point B is large, the effective distance is small and vice versa," Helbing explained. "The only thing we had to do was to find the right mathematical formula for this."

With this type of mathematical foundation, Brockmann and Helbing can visualize the geographic spread of past diseases, such as SARS in 2003, or influenza H1N1 in 2009. Formerly complex dynamic patterns with no apparent structure thus turn into simple, concentric and regular wave patterns. These patterns can be easily captured mathematically.

"In the future, we hope our approach can substantially improve existing, state-of-the-art models for disease spread," Brockmann said.

"We believe our theory also will help to better understand other important contagion phenomena, such as the spread of computer viruses, information and fads, or contagion phenomena in social networks," Helbing added.

The title of the paper is "The Hidden Geometry of Complex, Network-Driven Contagion Phenomena."
-end-


Northwestern University

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.