Low-power tunneling transistor for high-performance devices at low voltage

December 12, 2013

A new type of transistor that could make possible fast and low-power computing devices for energy-constrained applications such as smart sensor networks, implantable medical electronics and ultra-mobile computing is feasible, according to Penn State researchers. Called a near broken-gap tunnel field effect transistor (TFET), the new device uses the quantum mechanical tunneling of electrons through an ultrathin energy barrier to provide high current at low voltage.

Penn State, the National Institute of Standards and Technology and IQE, a specialty wafer manufacturer, jointly presented their findings at the International Electron Devices Meeting in Washington, D.C. The IEDM meeting includes representatives from all of the major chip companies and is the recognized forum for reporting breakthroughs in semiconductor and electronic technologies.

Tunnel field effect transistors are considered to be a potential replacement for current CMOS transistors, as device makers search for a way to continue shrinking the size of transistors and packing more transistors into a given area. The main challenge facing current chip technology is that as size decreases, the power required to operate transistors does not decrease in step. The results can be seen in batteries that drain faster and increasing heat dissipation that can damage delicate electronic circuits. Various new types of transistor architecture using materials other than the standard silicon are being studied to overcome the power consumption challenge.

"This transistor has previously been developed in our lab to replace MOSFET transistors for logic applications and to address power issues," said lead author and Penn State graduate student Bijesh Rajamohanan. "In this work we went a step beyond and showed the capability of operating at high frequency, which is handy for applications where power concerns are critical, such as processing and transmitting information from devices implanted inside the human body."

For implanted devices, generating too much power and heat can damage the tissue that is being monitored, while draining the battery requires frequent replacement surgery. The researchers, led by Suman Datta, professor of electrical engineering, tuned the material composition of the indium gallium arsenide/gallium arsenide antimony so that the energy barrier was close to zero -- or near broken gap, which allowed electrons to tunnel through the barrier when desired. To improve amplification, the researchers moved all the contacts to the same plane at the top surface of the vertical transistor.

This device was developed as part of a larger program sponsored by the National Science Foundation through the Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (NERC-ASSIST). The broader goal of the ASSIST program is to develop battery-free, body-powered wearable health monitoring systems with Penn State, North Carolina State University, University of Virginia, and Florida International University as participating institutions.
-end-
The paper, "Demonstration of InGaAs/GaAsSb Near Broken-gap Tunnel FET with Ion=740μA/μm, GM=700μS/μm and Gigahertz Switching Performance at VDS=0.5V," will be available in the conference proceedings publication of the IEDM.

Penn State

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.