New theory suggests alternate path led to rise of the eukaryotic cell

December 12, 2014

MADISON, Wis. - As a fundamental unit of life, the cell is central to all of biology. Better understanding how complex cells evolved and work promises new revelations in areas as diverse as cancer research and developing new crop plants.

But deep thinking on how the eukaryotic cell came to be is astonishingly scant. Now, however, a bold new idea of how the eukaryotic cell and, by extension, all complex life came to be is giving scientists an opportunity to re-examine some of biology's key dogma.

All complex life -- including plants, animals and fungi -- is made up of eukaryotic cells, cells with a nucleus and other complex internal machinery used to perform the functions an organism needs to stay alive and healthy. Humans, for example, are composed of 220 different kinds of eukaryotic cells -- which, working in groups, control everything from thinking and locomotion to reproduction and immune defense.

Thus, the origin of the eukaryotic cell is considered one of the most critical evolutionary events in the history of life on Earth. Had it not occurred sometime between 1.6 and 2 billion years ago, our planet would be a far different place, populated entirely by prokaryotes, single-celled organisms such as bacteria and archaea.

For the most part, scientists agree that eukaryotic cells arose from a symbiotic relationship between bacteria and archaea. Archaea -- which are similar to bacteria but have many molecular differences -- and bacteria represent two of life's three great domains. The third is represented by eukaryotes, organisms composed of the more complex eukaryotic cells.

Eukaryotic cells are characterized by an elaborate inner architecture. This includes, among other things, the cell nucleus, where genetic information in the form of DNA is housed within a double membrane; mitochondria, membrane-bound organelles, which provide the chemical energy a cell needs to function; and the endomembrane system, which is responsible for ferrying proteins and lipids about the cell.

Prevailing theory holds that eukaryotes came to be when a bacterium was swallowed by an archaeon. The engulfed bacterium, the theory holds, gave rise to mitochondria, whereas internalized pieces of the outer cell membrane of the archaeon formed the cell's other internal compartments, including the nucleus and endomembrane system.

"The current theory is widely accepted, but I would not say it is 'established' since nobody seems to have seriously considered alternative explanations," explains David Baum, a University of Wisconsin-Madison professor of botany and evolutionary biologist who, with his cousin, University College London cell biologist Buzz Baum, has formulated a new theory for how eukaryotic cells evolved. Known as the "inside-out" theory of eukaryotic cell evolution, the alternative view of how complex life came to be was published recently (Oct. 28, 2014) in the open access journal BMC Biology.

The inside-out theory proposed by the Baums suggests that eukaryotes evolved gradually as cell protrusions, called blebs, reached out to trap free-living mitochondria-like bacteria. Drawing energy from the trapped bacteria and using bacterial lipids -- insoluble organic fatty acids -- as building material, the blebs grew larger, eventually engulfing the bacteria and creating the membrane structures that form the cell's internal compartment boundaries.

"The idea is tremendously simple," says David Baum, who first began thinking about an alternate theory to explain the rise of the eukaryotic cell as an Oxford University undergraduate 30 years ago. "It is a radical rethinking, taking what we thought we knew (about the cell) and turning it inside-out."

From time to time, David Baum dusted off his rudimentary idea and shared it with others, including the late Lynn Margulis, the American scientist who developed the theory of the origin of eukaryotic organelles. Over the past year, Buzz and David Baum refined and detailed their idea, which, like any good theory, makes predictions that are testable.

"First, the inside-out idea immediately suggested a steady stepwise path of evolution that required few cellular or molecular innovations. This is just what is required of an evolutionary model," argues Buzz Baum, an expert on cell shape and structure. "Second, the model suggested a new way of looking at modern cells."

Modern eukaryotic cells, says Buzz Baum, can be interrogated in the context of the new theory to answer many of their unexplained features, including why nuclear events appear to be inherited from archaea while other features seem to be derived from the bacteria.

"It is refreshing to see people thinking about the cell holistically and based on how cells and organisms evolved," says Ahna Skop, a UW-Madison professor of genetics and an expert on cell division. The idea is "logical and well thought out. I've already sent the paper to every cell biologist I know. It simply makes sense to be thinking about the cell and its contents in the context of where they may have come from."

The way cells work when they divide, she notes, requires the interplay of molecules that have evolved over many millions of years to cut cells in two in the process of cell division. The same molecular functions, she argues, could be repurposed in a way that conforms to the theory advanced by the Baums. "Why spend the energy to remake something that was made thousands of years ago to pinch in a cell? The functions of these proteins just evolve and change as the organism's structure and function change."

Knowing more about how the eukaryotic cell came to be promises to aid biologists studying the fundamental properties of the cell, which, in turn, could one day fuel a better understanding of things like cancer, diabetes and other cell-based diseases; aging; and the development of valuable new traits for important crop plants.

One catch for fleshing out the evolutionary history of the eukaryotic cell, however, is that unlike many other areas of biology, the fossil record is of little help. "When it comes to individual cells, the fossil record is rarely very helpful," explains David Baum. "It is even hard to tell a eukaryotic cell from a prokaryotic cell. I did look for evidence of microfossils with protrusions, but, not surprisingly, there were no good candidates."

A potentially more fruitful avenue to explore, he suggests, would be to look for intermediate forms of cells with some, but not all, of the features of a full-blown eukaryote. "The implication is that intermediates that did exist went extinct, most likely because of competition with fully-developed eukaryotes."

However, with a more granular understanding of how complex cells evolved, it may be possible to identify living intermediates, says David Baum: "I do hold out hope that once we figure out how the eukaryotic tree is rooted, we might find a few eukaryotes that have intermediate traits."

"This is a whole new take (on the eukaryotic cell), which I find fascinating," notes UW-Madison biochemistry Professor Judith Kimble. "I have no idea if it is right or wrong, but they've done a good job of pulling in detail and providing testable hypotheses. That, in itself, is incredibly useful."
-end-
Terry Devitt, 608-262-8282, trdevitt@wisc.edu

University of Wisconsin-Madison

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.