Nav: Home

New epilepsy gene network identified by scientists

December 12, 2016

Scientists have discovered a gene network in the brain associated with epilepsy.

The team, led by scientists at Imperial College London, believe the discovery may lead to more treatments for the condition.

The study, published in the journal Genome Biology, has revealed an 'epileptic network' of 320 genes, called M30, that is associated with the condition. The genes in the network are thought to be involved in how brain cells communicate with each other.

The results suggest that when this network malfunctions, it triggers epilepsy. Finding medications that restore this network to normal could provide desperately needed new treatments, explained Professor Michael Johnson, senior author of the research from the Department of Medicine at Imperial.

"Epilepsy is one of the most common serious neurological diseases worldwide. Yet despite almost 30 different drugs licensed for the condition, a third of people with epilepsy continue to suffer from uncontrolled epileptic seizures - despite taking medication.

"In fact, very little progress in finding more effective drugs for epilepsy has been made in the past 100 years."

He added that many drug companies have stopped their research into finding new medicines for epilepsy.

"But the discovery of this network of genes linked to epilepsy opens avenues for finding new treatments. This uses an approach that is entirely different to the past 100 years of anti-epilepsy drug development."

Interestingly, the network seems to malfunction in epilepsy caused by genetic causes, as well as epilepsy triggered by brain injury such as following stroke or infection.

Epilepsy affects around half a million people in the UK, and over 50 million worldwide. The condition triggers seizures, which can cause a range of symptoms - from an odd sensation or a trance-like state, to severe convulsions and loss of consciousness. Seizures are thought to be caused by brain cells sending faulty signals to each other.

In most people with epilepsy, the disease is thought to be caused by their genes. However, one third of cases are triggered by damage to the brain from causes such as head injury, stroke, tumours or infection.

In the new research, which was conducted in collaboration with Duke-NUS Medical School in Singapore, scientists used computational techniques to scan thousands of genes and mutations associated with epilepsy. They also looked at data from healthy human brains, to identify networks of genes that seem to work together, and were associated with the disease.

The scientists also used data from mice to confirm that malfunctions in this network triggered seizures.

The team then computationally analysed 1,300 known drugs to predict which ones could help restore the gene network to normal.

One of the drugs found was a known epilepsy treatment, called valproic acid.

The team's analyses also pointed to many other drugs not previously considered as conventional anti-epilepsy medications.

One of these was withaferin A, a compound derived from a plant known as Indian ginseng that has been used in Ayurvedic medicine for centuries to treat a range of diseases, including epilepsy.

Professor Johnson explained that finding other compounds that restore the activity of the network could lead to potential new treatments.

He added that the method used in this study, called 'network biology' - where computer systems are used to identify gene networks that work together to underpin disease - may also help find treatments for other conditions.

"Until recently we have been looking for individual genes associated with diseases, which drug companies then target with treatments. However, we are increasingly aware that genes don't work in isolation. Identifying groups of genes that work together, and then targeting these networks of genes, may lead to more effective treatments. Our proof of concept study suggests this network biology approach could help us identify new medications for epilepsy, and the methods can also be applied to other diseases."
-end-
The research was funded by the European Union's Seventh Framework Programme, and the National Institute for Health Research Imperial Biomedical Research Centre.

Imperial College London

Related Epilepsy Articles:

Breaching the brain's defense causes epilepsy
Epileptic seizures can happen to anyone. But how do they occur and what initiates such a rapid response?
Using connectomics to understand epilepsy
Abnormalities in structural brain networks and how brain regions communicate may underlie a variety of disorders, including epilepsy, which is one focus of a two-part Special Issue on the Brain Connectome in Brain Connectivity, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers.
Epilepsy: Triangular relationship in the brain
When an epileptic seizure occurs in the brain, the nerve cells lose their usual pattern and fire in a very fast rhythm.
How concussions may lead to epilepsy
Researchers have identified a cellular response to repeated concussions that may contribute to seizures in mice like those observed following traumatic brain injury in humans.
Understanding epilepsy in pediatric tumors
A KAIST research team led by Professor Jeong Ho Lee of the Graduate School of Medical Science and Engineering has recently identified a neuronal BRAF somatic mutation that causes intrinsic epileptogenicity in pediatric brain tumors.
Can medical marijuana help treat intractable epilepsy?
A new British Journal of Clinical Pharmacology review examines the potential of medicinal cannabis -- or medical marijuana -- for helping patients with intractable epilepsy, in which seizures fail to come under control with standard anticonvulsant treatment.
Fertility rates no different for women with epilepsy
'Myth-busting' study among women with no history of infertility finds that those with epilepsy are just as likely to become pregnant as those without.
Do women with epilepsy have similar likelihood of pregnancy?
Women with epilepsy without a history of infertility or related disorders who wanted to become pregnant were about as likely as their peers without epilepsy to become pregnant.
Hope for new treatment of severe epilepsy
Researchers at Lund University in Sweden believe they have found a method that in the future could help people suffering from epilepsy so severe that all current treatment is ineffective.
Many epilepsy patients take drug combinations that interact
In an Epilepsia analysis of 2008-2010 Medicare claims data, one in four older Americans with new-onset epilepsy and more than one-third with prevalent epilepsy received a combination of antiepileptic drugs and non-epilepsy drugs that could interact to alter the effectiveness of the non-epilepsy drugs.
More Epilepsy News and Epilepsy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.