Nav: Home

Researchers' discovery of new verbal working memory architecture has implications for AI

December 12, 2016

The neural structure we use to store and process information in verbal working memory is more complex than previously understood, finds a new study by researchers at New York University. It shows that processing information in working memory involves two different networks in the brain rather than one--a discovery that has implications for the creation of artificial intelligence (AI) systems, such as speech translation tools.

"Our results show there are at least two brain networks that are active when we are manipulating speech and language information in our minds," explains Bijan Pesaran, an associate professor at New York University's Center for Neural Science and the senior author of the research.

The work appears in the journal Nature Neuroscience.

Past studies had emphasized how a single "Central Executive" oversaw manipulations of information stored in working memory. The distinction is an important one, Pesaran observes, because current AI systems that replicate human speech typically assume computations involved in verbal working memory are performed by a single neural network.

"Artificial intelligence is gradually becoming more human like," says Pesaran. "By better understanding intelligence in the human brain, we can suggest ways to improve AI systems. Our work indicates that AI systems with multiple working memory networks are needed."

The paper's first author was Greg Cogan, an NYU postdoctoral fellow at the time of the study and now a postdoctoral fellow at Duke University; other co-authors were Professor Orrin Devinsky, director of the Comprehensive Epilepsy Center at NYU Langone Medical Center, Werner Doyle, an associate professor at NYU Langone's Department of Neurosurgery, Dan Friedman, an associate professor at NYU Langone's Department of Neurology, and Lucia Melloni, an assistant professor at NYU Langone's Department of Neurology.

The study focused on a form of working memory critical for thinking, planning, and creative reasoning and involves holding in mind and transforming the information necessary for speech and language.

The researchers examined human patients undergoing brain monitoring to treat drug-resistant epilepsy. Specifically, they decoded neural activity recorded from the surface of the brain of these patients as they were listening to speech sounds and speaking after a short delay. This method required the study's subjects to use a rule provided by the researchers to transform speech sounds they heard into different spoken utterances--for example, the patients were told to repeat the same sound they had heard while at other times the researchers instructed the patients to listen to the sound and make a different utterance.

The researchers decoded the neural activity in each patient's brain as the patients applied the rule to convert what they heard into what they needed to say. The results revealed that manipulating information held in working memory involved the operation of two brain networks. One network encoded the rule that the patients were using to guide the utterances they made (the rule network). Surprisingly, however, the rule network did not encode the details of how the subjects converted what they heard into what they said. The process of using the rule to transform the sounds into speech was handled by a second, transformation network. Activity in this network could be used to track how the input (what was heard) was being converted into the output (what was spoken) moment-by-moment.

Translating what you hear in one language to speak in another language involves applying a similar set of abstract rules. People with impairments of verbal working memory find it difficult to learn new languages. Modern intelligent machines also have trouble learning languages, the researchers add.

"One way we can enhance the development of more intelligent systems is with a fuller understanding of how the human brain and mind works," notes Pesaran. "Diagnosing and treating working memory impairments in people involves psychological assessments. By analogy, machine psychology may one day be useful for diagnosing and treating impairments in the intelligence of our machines. This research examines a uniquely human form of intelligence, verbal working memory, and suggests new ways to make machines more intelligent."
-end-
This work was supported, in part, by the National Institute on Deafness and Other Communication Disorders, part of the National Institutes of Health (R03-DC010475), and the Simons Collaboration for the Global Brain.

New York University

Related Language Articles:

Chinese to rise as a global language
With the continuing rise of China as a global economic and trading power, there is no barrier to prevent Chinese from becoming a global language like English, according to Flinders University academic Dr Jeffrey Gil.
'She' goes missing from presidential language
MIT researchers have found that although a significant percentage of the American public believed the winner of the November 2016 presidential election would be a woman, people rarely used the pronoun 'she' when referring to the next president before the election.
How does language emerge?
How did the almost 6000 languages of the world come into being?
New research quantifies how much speakers' first language affects learning a new language
Linguistic research suggests that accents are strongly shaped by the speaker's first language they learned growing up.
Why the language-ready brain is so complex
In a review article published in Science, Peter Hagoort, professor of Cognitive Neuroscience at Radboud University and director of the Max Planck Institute for Psycholinguistics, argues for a new model of language, involving the interaction of multiple brain networks.
Do as i say: Translating language into movement
Researchers at Carnegie Mellon University have developed a computer model that can translate text describing physical movements directly into simple computer-generated animations, a first step toward someday generating movies directly from scripts.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
Sign language reveals the hidden logical structure, and limitations, of spoken language
Sign languages can help reveal hidden aspects of the logical structure of spoken language, but they also highlight its limitations because speech lacks the rich iconic resources that sign language uses on top of its sophisticated grammar.
Lying in a foreign language is easier
It is not easy to tell when someone is lying.
More Language News and Language Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.