Nav: Home

Study shows aging process increases DNA mutations in important type of stem cell

December 12, 2016

SAN DIEGO - As it is in much of life, the aging process isn't kind to an important type of stem cell that has great therapeutic promise.

Researchers at the Scripps Translational Science Institute (STSI) and The Scripps Research Institute (TSRI) who looked at the effect of aging on induced pluripotent stem cells (iPSCs) found that genetic mutations increased with the age of the donor who provided the source cells, according to study results published today by the journal Nature Biotechnology.

The findings reinforce the importance of screening iPSCs for potentially harmful DNA mutations before using them for therapeutic purposes, said lead investigators Ali Torkamani, Ph.D., director of genome informatics at STSI, and Kristin Baldwin Ph.D., the study's co-lead investigators and associate professor of molecular and cellular neuroscience at the Dorris Neuroscience Center at TSRI.

"Any time a cell divides, there is a risk of a mutation occurring. Over time, those risks multiply," Torkamani said. "Our study highlights that increased risk of mutations in iPSCs made from older donors of source cells."

Researchers found that iPSCs made from donors in their late 80s had twice as many mutations among protein-encoding genes as stem cells made from donors in their early 20s.

That trend followed a predictable linear track paired with age with one exception. Unexpectedly, iPSCs made from blood cells donated by people over 90 years old actually contained fewer mutations than what researchers had expected. In fact, stem cells from those extremely elderly participants had mutation numbers more comparable to iPSCs made from donors one-half to two-thirds younger.

Researchers said the reason for this could be tied to the fact that blood stem cells remaining in elderly people have been protected from mutations over their lifetime by dividing less frequently.

"Using iPSCs for treatment has already been initiated in Japan in a woman with age-related macular degeneration," said paper co-author and STSI Director Eric Topol, M.D. "Accordingly, it's vital that we fully understand the effects of aging on these cells being cultivated to treat patients in the future."

STSI is a National Institutes of Health-sponsored site led by Scripps Health in collaboration with TSRI. This innovative research partnership is leading the effort to translate wireless and genetic medical technologies into high-quality, cost-effective treatments and diagnostics for patients.

Of the 336 different mutations that were identified in the iPSCs generated for the study, 24 were in genes that could impair cell function or trigger tumor growth if they malfunctioned.

How troublesome these mutations could be depends on how well the stem cells are screened to filter out the defects and how they are used therapeutically, Torkamani said. For example, cells made from iPSCs for a bone marrow transplant would be potentially dangerous if they contained a TET2 gene mutation linked to blood cancer, which surfaced during the study.

"We didn't find any overt evidence that these mutations automatically would be harmful or pathogenic," he said.

For the study, researchers tapped three sources for 16 participant blood samples: The Wellderly Study, an ongoing STSI research project that is searching for the genetic secrets behind lifelong health by looking at the genes of healthy elderly people ages 80 to 105; the STSI GeneHeart Study, which involves people with coronary artery disease; and TSRI's research blood donor program.

The iPSCs were generated by study co-authors Valentina Lo Sardo, Ph.D., and Will Ferguson, M.S., researchers in the TSRI group led by Baldwin.

"When we proposed this study, we weren't sure whether it would even be possible to grow iPSCs from the blood of the participants in the Wellderly Study, since others have reported difficulty in making these stem cells from aged patients," Baldwin said. "But through the hard work and careful experiments designed by Valentina and Will, our laboratories became the first to produce iPSCs from the blood of extremely elderly people."
-end-
Paper co-authors included Lo Sardo, Ferguson and Baldwin with TSRI; and Galina A. Erikson, Dr. Topol and Torkamani with STSI.

ABOUT SCRIPPS TRANSLATIONAL SCIENCE INSTITUTE

The Scripps Translational Science Institute aims to replace traditional one-size-fits-all medicine with individualized health care by leveraging the power of genomic medicine, wireless health sensors and mobile phone applications, and other digital medicine technologies. In a unique collaboration, STSI merges the considerable biomedical science expertise of The Scripps Research Institute with Scripps Health's exceptional patient care and clinical research capabilities. STSI is supported in part by the National Institutes of Health Clinical and Translational Science Award. For more information, visit http://www.stsiweb.org.

Scripps Health

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.