Nav: Home

New study uncovers vivid patterns of neural activity in the resting mouse brain

December 12, 2016

NEW YORK -- Columbia scientists have traced the origins of mysterious signals in the brain that have captivated the functional magnetic resonance imaging (fMRI) community for the last decade. Using a recently developed imaging technique in mice, the Columbia team revealed synchronized, network-like neural activity coursing around the brain, even when the mouse was 'at rest.' The researchers further demonstrated that this neural activity could predict slowly changing patterns of blood flow in the brain, connecting their findings to the enigmatic signals detected in so-called 'resting-state' fMRI. Taken together, this research provides a tantalizing new view of brain-wide neural activity that could lead to a better understanding of how distinct brain regions interact with each other, and how these connections -- and the way they change with disease -- can be studied in the human brain using fMRI.

The researchers published their findings today in the Proceedings of the National Academy of Sciences.

"Our results should reassure scientists in the resting-state fMRI community who have long believed that they were detecting patterns of neural activity," said Elizabeth Hillman, PhD, principal investigator at Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute, associate professor of biomedical engineering and radiology at Columbia's Fu Foundation School of Engineering and Applied Science and the paper's senior author. "At the same time, our results may come as a surprise for those who have remained skeptical that -- first of all -- this type of underlying neural activity even exists, but also that such activity can be accurately represented by fMRI signals."

Within a few years of the first demonstration of fMRI, scientists noticed that, even without an external stimulus, fluctuating signals could be detected in the brains of humans. Despite appearing to be random, analysis of these signals identified regions located on opposite sides of the brain that were synchronously singing the same random song. This synchrony was taken as evidence of interconnected functional networks throughout the brain. Moreover, properties of these networks were found to distinguish subtle signs of disease that are otherwise undetectable. However, these resting-state fMRI signals have proved challenging to interpret, in large part because fMRI works not by tracking the activity of neurons in the brain, but by tracking changes in blood flow as a proxy for that activity. As a result, it has been difficult to reconcile this high-level view of the brain with how scientists think of neurons interacting with each other individually.

To address this, Dr. Hillman and her team employed a wide-field, optical imaging method that allowed them to visualize both changes in blood flow and neural activity simultaneously across the surface of the mouse brain. Much to their surprise, they saw patterns of neural activity that flickered and swirled around the brain in elegant symmetric patterns.

"First, we only looked at small areas of the brain, seeing what seemed to be flashes and random activity,"said Dr. Hillman. "But when we zoomed out to view both sides of the brain at once, we saw that this activity wasn't random -- it was symmetrical, organized and composed of repeating patterns. We immediately thought of resting-state fMRI."

They then compared these patterns to changes in blood flow. And while these blood-flow changes at first appeared sluggish compared to the neural activity, further analysis revealed that the fluctuations did in fact represent a cumulative effect; each small neural signal was triggering a small, slow increase in blood flow.

"In essence, these findings tell us that resting-state fMRI is probably picking up a representation of these underlying neural signals," said Ying Ma, a doctoral candidate at Columbia and the paper's first author. "What is great about our data is that it lets us uncover how these signals get blurred and distorted in fMRI, and whether there are any additional changes in blood flow -- or cellular activity -- that are also occurring but that aren't accounted for by normal neural activity. We hope that this will help to improve how fMRI data is analyzed and interpreted."

The team has already begun working with fMRI researchers to help in the development of more robust methods of drawing information out of resting-state fMRI scans in the healthy human brain, and to explore how and why networks appear to change in disease states.

Moving forward, Dr. Hillman and her team are also expanding their studies of brain-wide neural activity to include more complex methods that, she hopes, will provide fundamental insights into how and why this resting-state neural activity is generated.

"Our high-speed imaging methods are giving us an entirely new view of what the brain is doing, one that we hadn't seen before," said Dr. Hillman. "We are eager to understand how this brain-wide activity fits with classic descriptions of the brain's underlying circuitry.

"Moreover," she added, "we can follow the lead of resting-state fMRI and understand why these activity patterns are affected by disease, this could be the first step to developing new treatments."
-end-
This paper is titled: "Resting state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons." Additional contributors include Mohammad Shaik, Mariel Kozberg, PhD, Sharon Kim, Jacob Portes and Dmitry Timmerman.

This research was supported by the National Institutes of Health (1R01NS063226, 1R01NS076628), the National Science Foundation (CAREER 0954796), the Human Frontier Science Foundation and the Kavli Foundation. The authors report no financial or other conflicts of interest.

Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute brings together an extraordinary group of world-class scientists and scholars to pursue the most urgent and exciting challenge of our time: understanding the brain and mind. A deeper understanding of the brain promises to transform human health and society. From effective treatments for disorders like Alzheimer's, Parkinson's, depression and autism to advances in fields as fundamental as computer science, economics, law, the arts and social policy, the potential for humanity is staggering. To learn more, visit: zuckermaninstitute.columbia.edu.

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society's more difficult challenges. engineering.columbia.edu.

The Zuckerman Institute at Columbia University

Related Blood Flow Articles:

Stuttering linked to reduced blood flow in area of brain associated with language
A study led by researchers at Children's Hospital Los Angeles demonstrates that regional cerebral blood flow is reduced in the Broca's area -- the region in the frontal lobe of the brain linked to speech production -- in persons who stutter.
New study shows marijuana users have low blood flow to the brain
Published in the Journal of Alzheimer's Disease, researchers using single photon emission computed tomography, a sophisticated imaging study that evaluates blood flow and activity patterns, demonstrated abnormally low blood flow in virtually every area of the brain studies in nearly 1,000 marijuana users compared to healthy controls, including areas known to be affected by Alzheimer's pathology such as the hippocampus.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Studying blood flow dynamics to identify the heart of vessel failure
New research from a fluid mechanics team in Greece reveals how blood flow dynamics within blood vessels may influence where plaques develop or rupture this week in Physics of Fluids.
Restoring leg blood flow is better option than exercise for PAD patients
Procedures to restore blood flow to the affected legs of peripheral artery disease (PAD) patients stopped progression of the scarring associated with the disease.
Abnormally low blood flow indicates damage to NFL players' brains
The discovery of brain pathology through autopsy in former National Football League (NFL) players called chronic traumatic encephalopathy (CTE) has raised substantial concern among players, medical professionals, and the general public about the impact of repetitive head trauma.
Blood flow measurements in microfluidic devices fabricated by a micromilling technique
The researchers show the ability of a micromilling machine to manufacture microchannels down to 30 μm and also the ability of a microfluidic device to perform partial separation of red blood cells from plasma.
Low blood flow in back of brain increases risk of recurrent stroke
Patients who have had a stroke in the back of the brain are at greater risk of having another within two years if blood flow to the region is diminished, according to results of a multicenter study led by researchers at the University of Illinois at Chicago.
Reduced blood flow seen in brain after clinical recovery of acute concussion
Some athletes who experience sports-related concussions have reduced blood flow in parts of their brains even after clinical recovery, according to new research.
Researchers identify mechanism that impairs blood flow with aging
With the world's elderly population expected to double by 2050, understanding how aging affects the body is an important focus for researchers globally.

Related Blood Flow Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...