Nav: Home

Groundbreaking study sheds light on treating cancer

December 12, 2016

The new study, by researchers from UNIST demonstrates a more holistic light-based treatment to nuke cancer cells instead of surgery. The results, reported in the September issue of the Journal of the American Chemical Society (JACS), could open up new avenues of research in cancer treatment.

This research has been jointly conducted by Prof. Tae-Hyuk Kwon (School Natural Science), Prof. Mi Hee Lim (School of Natural Science), and Prof. Hyun-Woo Rhee (School of Natural Science), and eight other researchers at UNIST.

The study focuses on Iridium(III) complexes as promising novel agents for photodynamic therapy (PDT), a treatment that selectively wipes out cancerous cells without harming surrounding tissue.

It also provides a careful analysis of reactive oxygen species (ROS) production process, as well as the therapeutic effects of specific wavelengths of different colors of light on cancer cells. It turns out that these Iridium(III)-based materials that utilize red lights attack the cancer cells more effectively and eventually lead to the cell death.

The PDT uses special drugs, called photosensitizers (PSs) in combination with harmless visible light to kill cancer cells. Upon activation by light, a PS produces a form of oxygen that display selective cancer cell killing behaviors. However, to date, the detailed mechanisms and direct involvement in PDT have not been revealed clearly.

In the study, Prof. Kwon and his colleagues developed a number of PSs for PDT. The results show that red-light-absorbing PSs with longer wavelengths significantly accelerated ROS production compared to blue and green lights of shorter wavelengths.

Jung Seung Nam (Combined M.S./Ph.D. student of Nature Science, UNIST), the first author of the study states, "These newly-developed Iridium(III) complexes not only induce enhanced production of ROS, but they are also effective at killing cancer cells." He adds, "Using infrared light that penetrate deep into the human body, we are now capable of killing deep cancer tumors without damaging healthy tissue."

To further understand the exact mechanism of apoptotic cell death, the research team characterized the modes of action for Iridium(III) complexes for both protein cross-linking and protein oxidation, using mass spectrometry (MS).

They report that "In living cells, the damage was predominantly found in proteins near the endoplasmic reticulum (ER) and mitochondria with significant association to cell death pathways. Therefore, these Iridium(III) complexes efficiently functioned as PDT agents in cancer cells."

The team expects that their Iridium(III) complexes could be used for additive-free photo-cross-linking in other fields beyond PDT. With further research, this novel agents could conceivably used to treat a wide range of human cancers, researchers say. This study has been supported by the UNIST Alzheimer's Disease research fund.
-end-
Journal Reference: Jung Seung Nam, Myeong-Gyuu Kang, Juhye Kang, Sun-Young Park, Shin Jung C. Lee, Hyun-Tak Kim, Jeong Kon Seo, Oh-Hoon Kwon, Mi Hee Lim, Hyun-Woo Rhee, and Tae-Hyuk Kwon, "Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications", JACS, (2016).

Ulsan National Institute of Science and Technology(UNIST)

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...