Nav: Home

Groundbreaking study sheds light on treating cancer

December 12, 2016

The new study, by researchers from UNIST demonstrates a more holistic light-based treatment to nuke cancer cells instead of surgery. The results, reported in the September issue of the Journal of the American Chemical Society (JACS), could open up new avenues of research in cancer treatment.

This research has been jointly conducted by Prof. Tae-Hyuk Kwon (School Natural Science), Prof. Mi Hee Lim (School of Natural Science), and Prof. Hyun-Woo Rhee (School of Natural Science), and eight other researchers at UNIST.

The study focuses on Iridium(III) complexes as promising novel agents for photodynamic therapy (PDT), a treatment that selectively wipes out cancerous cells without harming surrounding tissue.

It also provides a careful analysis of reactive oxygen species (ROS) production process, as well as the therapeutic effects of specific wavelengths of different colors of light on cancer cells. It turns out that these Iridium(III)-based materials that utilize red lights attack the cancer cells more effectively and eventually lead to the cell death.

The PDT uses special drugs, called photosensitizers (PSs) in combination with harmless visible light to kill cancer cells. Upon activation by light, a PS produces a form of oxygen that display selective cancer cell killing behaviors. However, to date, the detailed mechanisms and direct involvement in PDT have not been revealed clearly.

In the study, Prof. Kwon and his colleagues developed a number of PSs for PDT. The results show that red-light-absorbing PSs with longer wavelengths significantly accelerated ROS production compared to blue and green lights of shorter wavelengths.

Jung Seung Nam (Combined M.S./Ph.D. student of Nature Science, UNIST), the first author of the study states, "These newly-developed Iridium(III) complexes not only induce enhanced production of ROS, but they are also effective at killing cancer cells." He adds, "Using infrared light that penetrate deep into the human body, we are now capable of killing deep cancer tumors without damaging healthy tissue."

To further understand the exact mechanism of apoptotic cell death, the research team characterized the modes of action for Iridium(III) complexes for both protein cross-linking and protein oxidation, using mass spectrometry (MS).

They report that "In living cells, the damage was predominantly found in proteins near the endoplasmic reticulum (ER) and mitochondria with significant association to cell death pathways. Therefore, these Iridium(III) complexes efficiently functioned as PDT agents in cancer cells."

The team expects that their Iridium(III) complexes could be used for additive-free photo-cross-linking in other fields beyond PDT. With further research, this novel agents could conceivably used to treat a wide range of human cancers, researchers say. This study has been supported by the UNIST Alzheimer's Disease research fund.
-end-
Journal Reference: Jung Seung Nam, Myeong-Gyuu Kang, Juhye Kang, Sun-Young Park, Shin Jung C. Lee, Hyun-Tak Kim, Jeong Kon Seo, Oh-Hoon Kwon, Mi Hee Lim, Hyun-Woo Rhee, and Tae-Hyuk Kwon, "Endoplasmic Reticulum-Localized Iridium(III) Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications", JACS, (2016).

Ulsan National Institute of Science and Technology(UNIST)

Related Cancer Cells Articles:

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
Brain cancer: Typical mutation in cancer cells stifles immune response
The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.
An index measures similarity between cancer cells and pluripotent stem cells
The new methodology measures tumor aggressiveness and the risk of relapse, helping doctors plan treatment, according to Brazilian scientists authors of a paper published in a special issue of the journal Cell.
More Cancer Cells News and Cancer Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab