Nav: Home

Why we walk on our heels instead of our toes

December 12, 2016

James Webber took up barefoot running 12 years ago. He needed to find a new passion after deciding his planned career in computer-aided drafting wasn't a good fit. Eventually, his shoeless feet led him to the University of Arizona, where he enrolled as a doctoral student in the School of Anthropology.

Webber was interested in studying the mechanics of running, but as the saying goes, one must learn to walk before they can run, and that -- so to speak -- is what Webber has been doing in his research.

His most recent study on walking, published in the Journal of Experimental Biology, specifically explores why humans walk with a heel-to-toe stride, while many other animals -- such as dogs and cats -- get around on the balls of their feet.

It was an especially interesting question from Webber's perspective, because those who do barefoot running, or "natural running," land on the middle or balls of their feet instead of the heels when they run -- a stride that would feel unnatural when walking.

Indeed, humans are pretty set in our ways with how we walk, but our heel-first style could be considered somewhat curious.

"Humans are very efficient walkers, and a key component of being an efficient walker in all kind of mammals is having long legs," Webber said. "Cats and dogs are up on the balls of their feet, with their heel elevated up in the air, so they've adapted to have a longer leg, but humans have done something different. We've dropped our heels down on the ground, which physically makes our legs shorter than they could be if were up on our toes, and this was a conundrum to us (scientists)."

Webber's study, however, offers an explanation for why our heel-strike stride works so well, and it still comes down to limb length: Heel-first walking creates longer "virtual legs," he says.

We Move Like a Human Pendulum

When humans walk, Webber says, they move like an inverted swinging pendulum, with the body essentially pivoting above the point where the foot meets the ground below. As we take a step, the center of pressure slides across the length of the foot, from heel to toe, with the true pivot point for the inverted pendulum occurring midfoot and effectively several centimeters below the ground. This, in essence, extends the length of our "virtual legs" below the ground, making them longer than our true physical legs.

As Webber explains: "Humans land on their heel and push off on their toes. You land at one point, and then you push off from another point eight to 10 inches away from where you started. If you connect those points to make a pivot point, it happens underneath the ground, basically, and you end up with a new kind of limb length that you can understand. Mechanically, it's like we have a much longer leg than you would expect."

Webber and his adviser and co-author, UA anthropologist David Raichlen, came to the conclusion after monitoring study participants on a treadmill in the University's Evolutionary Biomechanics Lab. They looked at the differences between those asked to walk normally and those asked to walk toe-first. They found that toe-first walkers moved slower and had to work 10 percent harder than those walking with a conventional stride, and that conventional walkers' limbs were, in essence, 15 centimeters longer than toe-first walkers.

"The extra 'virtual limb' length is longer than if we had just had them stand on their toes, so it seems humans have found a novel way of increasing our limb length and becoming more efficient walkers than just standing on our toes," Webber said. "It still all comes down to limb length, but there's more to it than how far our hip is from the ground. Our feet play an important role, and that's often something that's been overlooked."

When the researchers sped up the treadmill to look at the transition from walking to running, they also found that toe-first walkers switched to running at lower speeds than regular walkers, further showing that toe-first walking is less efficient for humans.

Ancient Human Ancestors Had Extra-Long Feet

It's no wonder humans are so set in our ways when it comes to walking heel-first -- we've been doing it for a long time. Scientists know from footprints found preserved in volcanic ash in Latoli, Tanzania, that ancient hominins practiced heel-to-toe walking as early as 3.6 million years ago.

Our feet have changed over the years, however. Early bipeds (animals that walk on two feet) appear to have had rigid feet that were proportionally much longer than ours today -- about 70 percent the length of their femur, compared to 54 percent in modern humans. This likely helped them to be very fast and efficient walkers. While modern humans held on to the heel-first style of walking, Webber suggests our toes and feet may have gotten shorter, proportionally, as we became better runners in order to pursue prey.

"When you're running, if you have a really long foot and you need to push off really hard way out at the end of your foot, that adds a lot of torque and bending," Webber said. "So the idea is that as we shifted into running activities, our feet started to shrink because it maybe it wasn't as important to be super-fast walkers. Maybe it became important to be really good runners."
-end-


University of Arizona

Related Modern Humans Articles:

The homeland of modern humans
A landmark study pinpoints the birthplace of modern humans in southern Africa and suggests how past climate shifts drove their first migration.
Insight into competitive advantage of modern humans over Neanderthals
A team of Japanese and Italian researchers, including from Tohoku University, have evidenced mechanically delivered projectile weapons in Europe dating to 45,000-40,000 years -- more than 20,000 years than previously thought.
Extinct human species gave modern humans an immunity boost
Garvan researchers have discovered a gene variant that sheds new light on how human immunity was fine-tuned through history.
What the noggin of modern humans' ancestor would have looked like
Despite having lived about 300,000 years ago, the oldest ancestor of all members of our species had a surprisingly modern skull -- as suggested by a model created by CNRS researcher Aurélien Mounier and Cambridge University professor Marta Mirazón Lahr.
Exposing modern forgers
Researchers at ETH Zurich have developed a process that can provide conclusive evidence with regard to modern fakes of paintings, even in cases where the forger used old materials.
Neanderthals and modern humans diverged at least 800,000 years ago
Neanderthals and modern humans diverged at least 800,000 years ago, substantially earlier than indicated by most DNA-based estimates, according to new research by a UCL academic.
New avenues for improving modern wheat
Since the Agricultural Revolution about 12,000 years ago, humans have been selectively breeding plants with desirable traits such as high grain yield and disease resistance.
Researchers shed new light on the origins of modern humans
The work, published in Scientific Reports, confirms a dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration
Modern humans replaced Neanderthals in southern Spain 44,000 years ago
The University of Cordoba, in collaboration with the University of Granada, participated in an international study published today in the journal Nature Ecology and Evolution, proving that Neanderthals were replaced by modern humans in southern Iberia 5,000 years before than previously thought
A surprisingly early replacement of Neanderthals by modern humans in southern Spain
A new study of Bajondillo Cave (Málaga, Spain) reveals that modern humans replaced Neanderthals at this site approximately 44,000 years ago.
More Modern Humans News and Modern Humans Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab