Nav: Home

Personalizing chemotherapy to treat pediatric leukemia

December 12, 2016

A team of UCLA bioengineers has demonstrated that its technology may go a long way toward overcoming the challenges of treatment for acute lymphoblastic leukemia, among the most common types of cancer in children, and has the potential to help doctors personalize drug doses.

The five-year survival rate for individuals with pediatric acute lymphoblastic leukemia is about 85 percent, however those who experience a recurrence generally have a poor prognosis and a bone marrow transplant is their only option for a permanent cure.

Conventional treatment for this leukemia includes a combination of drugs, which come with short- and long-term side effects. Two of these drugs, 6-mercaptopurine and methotrexate, can cause liver disease and other life-threatening infections. During the maintenance phase of treatment, which aims to keep individuals in remission, dosing for these two drugs is frequently adjusted through a system of trial and error, which is not always accurate.

The UCLA team from the Schools of Dentistry, Medicine and Engineering showed that its digital health technology platform, called Phenotypic Personalized Medicine, or PPM, can surmount the treatment challenges for this leukemia. The technology platform is based on the team's stunning discovery that a patient's physical response to drug treatment, such as tumor size or bacterial and viral levels in the blood, could be visually represented in the shape of a parabola, or U-shaped line. The graphs plot the drug dose along the horizontal axis and the patient's response to treatment on the vertical axis.

The technology has the ability to accurately identify a person's optimal drug and dose combinations throughout an entire course of treatment. In addition, the technology platform does not require any complex and expensive analysis of a patient's genetic information or the biological basis of the disease, greatly accelerating the ability to optimize and personalize care.

The team's findings appear online in the peer-reviewed journal SLAS Technology, which features innovations in technology for drug development and diagnostics.

"Phenotypic Personalized Medicine is like turbocharged artificial intelligence. It personalizes combination therapy to optimize efficacy and safety," said Dean Ho, co-corresponding author of the study and professor of oral biology and medicine. "The ability for our technology to continuously pinpoint the proper dosages of multiple drugs from such a large pool of possible combinations overcomes a challenge that is substantially more difficult than finding a needle in a haystack," added Ho, who is also the co-director of the Weintraub Center for Reconstructive Biotechnology at the UCLA School of Dentistry.

In this study, patient records were obtained on the dosing of 6-mercaptopurine and methotrexate, as well as on the corresponding absolute neutrophil count, or levels of a subset of white blood cells called neutrophils that are vital for staving off potentially life-threatening infections. These records showed multiple instances where conventional chemotherapy doses caused deviations from acceptable neutrophil levels. Using the personalized medicine technology, individualized three-dimensional maps were generated to determine the optimal 6-mercaptopurine/methotrexate drug ratios.

The team members found that their technology-suggested drug dosages were as much as 40 percent lower compared to clinical chemotherapy dosages, while still maintaining target neutrophil levels. The parabolas showed that markedly different dosages of each drug were required to maintain normal white blood cell counts for each patient. Their results demonstrated a clear need to personalize acute lymphoblastic leukemia treatment, and will serve as a foundation for a pending clinical trial to optimize multi-drug chemotherapy.

"PPM has the ability to personalize combination therapy for a wide spectrum of diseases, making it a broadly applicable technology," said Chih-Ming Ho, distinguished research professor of mechanical and aerospace engineering and co-corresponding author of the study. "The fact that we don't need any information pertaining to a disease's biological process in order to optimize and personalize treatment is a revolutionary advance. We're at the interface of digital health and cancer treatment."

Dr. Vivian Chang, co-first author of the study and assistant professor of pediatrics and hematology and oncology, said, "Optimizing combination therapy for [pediatric leukemia] on a patient-specific level would be a game-changer for the way that this cancer, as well as many other cancers, is addressed. Reducing side effects while maintaining or even enhancing efficacy could also improve the long-term treatment outcomes of our patients." Chang is also co-director of the Pediatric Cancer Predisposition Clinic at UCLA.

The research team is planning to recruit patients for a prospective trial within the next year. The technology is approved for additional infectious disease and oncology studies.
-end-
Other authors of the study, all from UCLA, are co-first author and postdoctoral researcher Dong-Keun Lee and graduate student Theodore Kee. Dean Ho, Chih-Ming Ho and Chang are also members of the Jonsson Comprehensive Cancer Center.

This work was supported by the National Cancer Institute, National Science Foundation, V Foundation for Cancer Research, Wallace H. Coulter Foundation, Society for Laboratory Automation and Screening, UCLA Children's Discovery and Innovation Institute, Today's and Tomorrow's Children Fund Award and the endowment fund of the Ben Rich-Lockheed Martin Professorship.

University of California - Los Angeles

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.