The world's wet regions are getting wetter and the dry regions are getting drier

December 12, 2016

Research from the University of Southampton has provided robust evidence that wet regions of the earth are getting wetter and dry regions are getting drier but it is happening at a slower rate than previously thought.

The study, published in Scientific Reports, analysed the saltiness of the world's oceans.

More rain and outflow from rivers in a region of an ocean means sea water gets diluted and therefore becomes less salty. More evaporation in another region takes away fresh water and leaves salt behind making that region more saline.

The researchers used measurements of salinity throughout the global and deep oceans over the last 60 years to estimate how much global rainfall is changing.

The researchers found that the regions, which are relatively wet, like Northern Europe are getting wetter and dry regions are getting drier both by about 2 per cent over the last 60 years. This process is called amplification of the water cycle.

Previous research indicates that amplification of the water cycle, is happening at 7 per cent per 1°C of global warming. The new study estimates that amplification happens at about three to four per cent per 1°C. The research team believe this is probably due to a weakening of the atmospheric circulation which transports freshwater from the dry to wet regions of the globe.

Dr Nikolaos Skliris, a Research Fellow at the University of Southampton who led the study, said: "Our findings match what has been predicted by models of a warming climate; as the world gets warmer wet regions will continue to get wetter and dry regions will continue to get drier.

"Although we have found that this process is happening slower than first thought, if global warming exceeds 3°C, wet regions will likely get more than 10 per cent wetter and dry regions more than 10 per cent drier, which could have disastrous implications for river flows and agriculture."

Dr Skliris added "The agreement between climate models and observations over the recent past is another important finding of this study because it adds confidence to climate model projections of water cycle amplification under greenhouse gas emission scenarios."
-end-


University of Southampton

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.