Nav: Home

Chemists uncover a means to control catalytic reactions

December 12, 2016

TORONTO, ON - Scientists at the University of Toronto have found a way to make catalysis - the use of catalysts to facilitate chemical reactions - more selective, breaking one chemical bond 100 times faster than another. The findings are described in a study published in Nature Communications.

The team of researchers, led by Nobel Prize-winning chemist John Polanyi, employed a combination of experiment and theory to discover that the position of the molecule on the catalytic surface is a key factor in determining the rate at which particular bonds break.

"We found that the microscopic positioning of the molecule relative to the catalytic surface below, rendered the catalyst highly bond-specific," says Polanyi, University Professor in the Department of Chemistry at U of T. "The closer the alignment of the bonds of the molecule to the rows of atoms in the catalyst, the more selective was the reaction."

The scientists investigated a chemical reaction that involved breaking carbon-to-iodine bonds in the organic molecule iodobenzene, by means of metallic copper, a common catalyst. The reaction was initiated by an electron coming from the tip of a microscope, which attached itself to the iodobenzene.

"We observed acceleration in the reactivity of the carbon-to-iodine bonds when those bonds were aligned along rows of copper atoms in the catalyst, as compared to the bonds aligned across the copper rows," says Kelvin Anggara, a PhD candidate in Polanyi's research group and a lead author of the study.

"The copper surface acted more strongly on bonds that were nearby than on bonds that were further away," Anggara says. "We saw 100-fold differences in reactivity between bonds pointing in specific directions on the catalyst."

The experiment could be explained by a mathematical model developed by the researchers over the past few years, which enabled them to produce a computer-generated movie of the motions of the atoms involved in the bond-breaking at the copper surface. It was the movie that revealed the reason why the copper catalyzed the bonds along its rows in preference to bonds across the rows.

"The copper atoms along the rows were slightly closer together, by about the diameter of a single atom, than the atoms across the rows," says Anggara. "This closer spacing promoted the breaking of bonds lying along the rows."

The method is rooted in the study of chemical reactions taking place at the surface of solid materials that has guided Polanyi and his colleagues for decades. Following his receipt of the Nobel Prize in chemistry in 1986 for observing the molecular motions in chemical reactions occurring in gases, Polanyi began studying the reactions of individual molecules lying on well-defined catalytic surfaces.

Polanyi says scientists are only beginning to understand how catalysis operates, and that the shift towards green chemistry makes knowing as much as possible about catalysts and how they reduce waste caused by chemical reactions more important than ever before.

"The challenge for the future will be to fabricate metal catalysts embodying atomic patterns that speed chemical reactions along pathways that lead to desired products," said Polanyi. "Recent advances in the construction of surfaces, atom-by-atom, lend themselves to the fabrication of such engineered-catalysts. We're now a bit closer to that, since we begin to understand what patterns of atoms make the best catalysts."

The findings are reported in the study "Bond selectivity in electron-induced reaction due to directed recoil on an anisotropic substrate." Support for the research was provided by the Natural Sciences and Engineering Research Council of Canada, U of T NSERC General Research Fund and the Connaught International Scholarship for Doctoral Studies. Computations were performed on the SciNet HPC Consortium supercomputer at U of T.

Sean Bettam
Faculty of Arts & Science
University of Toronto

University of Toronto

Related Chemical Reactions Articles:

Caught on camera -- chemical reactions 'filmed' at the single-molecule level
Scientists have succeeded in 'filming' inter-molecular chemical reactions -- using the electron beam of a transmission electron microscope as a stop-frame imaging tool.
Study: Some catalysts contribute their own oxygen for reactions
New MIT research shows that metal-oxide catalysts can sometimes release oxygen from within their structure, enhancing chemical activity.
Chemists uncover a means to control catalytic reactions
Scientists at the University of Toronto have found a way to make catalysis more selective, breaking one chemical bond 100 times faster than another.
Deep insights from surface reactions
Using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have developed biosensors that can speed up drug development, designed improved materials for desalinization, and explored new ways of generating energy from bacteria.
Scientists trace 'poisoning' in chemical reactions to the atomic scale
A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
Scientists rev up speed of bionic enzyme reactions
Bionic enzymes got a needed boost in speed thanks to new research at the Berkeley Lab.
Adverse drug reactions may be under-reported in young children
A new study reveals that adverse drug reactions in newborns and infants may be under-reported.
New model predicts once-mysterious chemical reactions
A team of researchers from Los Alamos National Laboratory and Curtin University in Australia developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen.
Syracuse University chemists add color to chemical reactions
Members of the Maye Research Group at Syracuse University have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

Related Chemical Reactions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...