Nav: Home

Chemists uncover a means to control catalytic reactions

December 12, 2016

TORONTO, ON - Scientists at the University of Toronto have found a way to make catalysis - the use of catalysts to facilitate chemical reactions - more selective, breaking one chemical bond 100 times faster than another. The findings are described in a study published in Nature Communications.

The team of researchers, led by Nobel Prize-winning chemist John Polanyi, employed a combination of experiment and theory to discover that the position of the molecule on the catalytic surface is a key factor in determining the rate at which particular bonds break.

"We found that the microscopic positioning of the molecule relative to the catalytic surface below, rendered the catalyst highly bond-specific," says Polanyi, University Professor in the Department of Chemistry at U of T. "The closer the alignment of the bonds of the molecule to the rows of atoms in the catalyst, the more selective was the reaction."

The scientists investigated a chemical reaction that involved breaking carbon-to-iodine bonds in the organic molecule iodobenzene, by means of metallic copper, a common catalyst. The reaction was initiated by an electron coming from the tip of a microscope, which attached itself to the iodobenzene.

"We observed acceleration in the reactivity of the carbon-to-iodine bonds when those bonds were aligned along rows of copper atoms in the catalyst, as compared to the bonds aligned across the copper rows," says Kelvin Anggara, a PhD candidate in Polanyi's research group and a lead author of the study.

"The copper surface acted more strongly on bonds that were nearby than on bonds that were further away," Anggara says. "We saw 100-fold differences in reactivity between bonds pointing in specific directions on the catalyst."

The experiment could be explained by a mathematical model developed by the researchers over the past few years, which enabled them to produce a computer-generated movie of the motions of the atoms involved in the bond-breaking at the copper surface. It was the movie that revealed the reason why the copper catalyzed the bonds along its rows in preference to bonds across the rows.

"The copper atoms along the rows were slightly closer together, by about the diameter of a single atom, than the atoms across the rows," says Anggara. "This closer spacing promoted the breaking of bonds lying along the rows."

The method is rooted in the study of chemical reactions taking place at the surface of solid materials that has guided Polanyi and his colleagues for decades. Following his receipt of the Nobel Prize in chemistry in 1986 for observing the molecular motions in chemical reactions occurring in gases, Polanyi began studying the reactions of individual molecules lying on well-defined catalytic surfaces.

Polanyi says scientists are only beginning to understand how catalysis operates, and that the shift towards green chemistry makes knowing as much as possible about catalysts and how they reduce waste caused by chemical reactions more important than ever before.

"The challenge for the future will be to fabricate metal catalysts embodying atomic patterns that speed chemical reactions along pathways that lead to desired products," said Polanyi. "Recent advances in the construction of surfaces, atom-by-atom, lend themselves to the fabrication of such engineered-catalysts. We're now a bit closer to that, since we begin to understand what patterns of atoms make the best catalysts."

The findings are reported in the study "Bond selectivity in electron-induced reaction due to directed recoil on an anisotropic substrate." Support for the research was provided by the Natural Sciences and Engineering Research Council of Canada, U of T NSERC General Research Fund and the Connaught International Scholarship for Doctoral Studies. Computations were performed on the SciNet HPC Consortium supercomputer at U of T.

Sean Bettam
Faculty of Arts & Science
University of Toronto

University of Toronto

Related Chemical Reactions Articles:

Catalyst enables reactions with the help of green light
For the first time, chemists at the University of Bonn and Lehigh University in Bethlehem (USA) have developed a titanium catalyst that makes light usable for selective chemical reactions.
A new tool for controlling reactions in microrobots and microreactors
In a new paper, Thomas Russell and postdoctoral fellow Ganhua Xie, at the University of Massachusetts Amherst and Lawrence Berkeley National Laboratory, report that they have used capillary forces to develop a simple method for producing self-assembling hanging droplets of an aqueous polymer solution from the surface of a second aqueous polymer solution in well-ordered arrays.
First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.
Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.
Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.
Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.
Mechanical force as a new way of starting chemical reactions
Researchers have shown mechanical force can start chemical reactions, making them cheaper, more broadly applicable, and more environmentally friendly than conventional methods.
Using renewable electricity for industrial hydrogenation reactions
The University of Pittsburgh's James McKone's research on using renewable electricity for industrial hydrogenation reactions is featured in the Journal of Materials Chemistry A's Emerging Investigators special issue.
Quantum entanglement in chemical reactions? Now there's a way to find out
For the first time, scientists have developed a practical way to measure quantum entanglement in chemical reactions.
Driving chemical reactions with light
How can chemical reactions be triggered by light, following the example of photosynthesis in nature?
More Chemical Reactions News and Chemical Reactions Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at