Nav: Home

Faster (cheaper) method for making big bioactive ring molecules

December 12, 2016

Ring molecules called cyclic depsipeptides play an important role in living organisms. Microbes make them as part of their chemical arsenal for attacking competitors and they have proven effective as antibiotics, anti-retrovirals and pesticides, among other applications.

One problem, however, has been the difficulty of chemically synthesizing these biomolecules, particularly in larger ring-sizes. Current methods require a large number of chemical steps, each of which increases the time required and reduces the yield of the final product.

Now a pair of chemists -- Stevenson Professor of Chemistry Jeffrey Johnston and doctoral student Suzanne Batiste from the department of chemistry and Institute of Chemical Biology at Vanderbilt University -- have developed a method that produces cyclic depsipeptides in a single step with high yields and in unusually large sizes, ranging up to rings with 60 atoms.

They describe the new process in a paper titled "Rapid Synthesis of Cyclic Oligomeric Depsipeptides with Positional, Stereochemical and Macrocycle Size-Distribution Control" published this week in the online early edition of the Proceedings of the National Academy of Sciences.

"I don't know of any chemist who wouldn't take a single-step synthesis over one that takes multiple steps," said Johnston.

The Vanderbilt researchers achieved this result by adapting a standard tool in the synthetic organic chemist's toolbox called the "Mitsunobu reaction." Normally, this reaction is used to make one carbon-oxygen bond at a time. Johnston and Batiste modified it so it could be used to stitch monomers - small molecules that link to form molecular chains called oligomers -- together and then bind the ends together to form rings.

The new method enables them to make rings in unusual and much larger sizes than those found in nature and to do so all in a single step.

Once they have synthesized the basic monomer, using others with different chemical units, called decorations, to produce a variety of different bioactive molecules is relatively straightforward.

In addition, the chemists found that they could control the size of the rings being formed by adding different salts to their recipe.

For example, addition of salt sodium tetrafluoroborate tailored the reaction to produce only 24-atom rings. (This is the basic ring structure of the pesticide verticilide that normally requires 14 steps overall to synthesize, but now can be created in only six!) Similarly, the addition of the salt potassium tetrafluoroborate doubles the amount of 36-atom rings, while adding cesium chloride triples the amount of 60-atom rings produced from a single reaction.

"The salts act as templates. So salts of different sizes encourage the formation of rings of different sizes," Johnston explained.

The combination of their chemical make-up and ring structure account for cyclic depsipeptides' biological activity. They can be tailor-made to attach to specific receptors on cell surfaces. Receptors are large proteins with one end on the surface of a cell's outer membrane that respond to the presence of specific molecules in the cell's environment and trigger specific biochemical reactions within the cell. By capping a receptor's outer end, cyclic depsipeptides can either block the receptor or trigger it, depending on how they are designed. For example, verticilide blocks the activity of the ryanodine receptor, which controls the concentration of calcium ions within the cell, in insects but not in mammals.

"There is speculation that large depsipeptide rings may exhibit unique biological properties but efforts to explore this are in the very early stages," said Johnston. "Our new process will help open this new chemical space."
-end-
The research was funded by National Institute of General Medical Sciences grant NIH GM 063557.

Vanderbilt University

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.