Nav: Home

Anti-tumor synergy

December 12, 2016

Biocompatible nanocapsules, loaded with an amino acid and equipped with an enzyme now combine two anti-tumor strategies into a synergistic treatment concept. Researchers hope this increases effectiveness and decreases side effects. In the journal Angewandte Chemie, the scientists explain the concept: tumor cells are deprived of their nutrient glucose as this is converted to toxic nitrogen monoxide (NO) and hydrogen peroxide (H2O2).

NO is a toxic gas that causes smog. However, in low concentrations in the body it is an important messenger molecule that regulates such things as circulation and libido. It is also an important physiological defense weapon against fungi and bacteria. In higher concentrations, NO is capable of killing tumor cells and increasing the effectiveness of photodynamic and radiological treatments. For clinical use, NO needs to be released in the target area from a biocompatible precursor.

The natural amino acid L-arginine (L-Arg) may be useful in such a system, because the native enzyme inducible NO synthase (iNOS) makes NO from L-Arg. NO is also formed when L-Arg is oxidized by H2O2. This is interesting because the microenvironment around tumors is rich in H2O2. This approach to NO gas therapy is being pursued by researchers at Shenzhen University (China), the National Institutes of Health (Bethesda, USA), and the University of Maryland (College Park, USA). Their special twist is to combine this gas therapy with a method for starving cancer cells in a synergistic treatment.

Instead of starving a tumor by blocking the blood vessels that feed it, the researchers intend to remove the glucose that the tumor needs for nutrition by consuming it in a metabolic reaction: the enzyme glucose oxidase (GOx) converts the glucose into gluconic acid and H2O2. The increased H2O2 concentration is a useful side effect, because H2O2 is both cytotoxic and accelerates the release of NO from L-Arg. Another useful side effect is that H2O2 and NO react to form highly toxic peroxynitrites that damage the tumor cells.

The research team led by Peng Huang, Tianfu Wang, and Xiaoyuan Chen has now reached an important milestone in the development of this concept. They have developed biocompatible, biodegradable, porous nanocapsules made of organosilicates that transport GOx and L-Arg into tumor cells simultaneously. GOx is bound to the surface; L-Arg is stored inside the capsule. While the GOx is active immediately after injection of the nanocapsules into the tumor, L-Arg is released little by little, first through the capsule pores, then as the capsule disintegrates. Their large cavity also allows the capsules to serve as an ultrasound contrast material for better localization of the tumor.

Experiments with both cell cultures and mice have demonstrated the significant synergistic effect of this combination therapy, which successfully inhibits cell growth, initiates cell death, and shrinks the tumors in mice.
-end-
About the Author

Dr. Xiaoyuan (Shawn) Chen is a senior investigator and chief of the Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH). He received the ACS Bioconjugate Chemistry Lecturer Award (2016), NIH Director's Award (2014) and NIBIB Mentor Award (2012).

https://www.nibib.nih.gov/about-nibib/staff/xiaoyuan-chen

Wiley

Related Tumor Cells Articles:

When healthy cells stimulate the migration of tumor cells
Estrogens act as a driving force of both healthy and cancerous mammary cell growth by binding to receptors that include GPER, which is generally located in cell membranes.
Tumor cells get stiff before becoming invasive
A study published now on Nature Communications shows that breast cancer cells undergo a stiffening state prior to acquiring malignant features and becoming invasive.
Tumor-trained T cells go on patrol
In cancer, immune cells infiltrate tumors -- but it hasn't been known which immune cells exit the tumor or where they go next.
Tumor-dwelling immune cells thwart cancer immunotherapy
Researchers have caught tumor-associated immune cells called macrophages in the act of stealing checkpoint inhibitor antibodies away from their intended T cell targets, and blocking this thievery led to improved therapeutic responses in tumor-bearing mice.
Are tumor cells glutamine addicts?
Many tumors are thought to depend on glutamine, suggesting glutamine deprivation as therapeutic approach, but a new study shows that this effect might have been overestimated.
Tethered nanoparticles make tumor cells more vulnerable
MIT researchers have devised a way to make cancer cells more susceptible to certain types of cancer treatment, by coating the cells with nanoparticles before delivering drugs.
Researchers create viruses to selectively attack tumor cells
It is an innovative approach that takes advantage of the different expression profiles of certain proteins between tumor and healthy cells that make the virus to only infect the first ones.
Scientists use tumor-derived dendritic cells to slow tumor growth
In the human body, so-called dendritic cells are responsible for activating our immune system.
Tumor cells are dependent on fat to start metastasis
A study headed by Salvador Aznar Benitah, ICREA researcher at the Institute for Research in Biomedicine (IRB Barcelona), and published today in Nature identifies metastasis-initiating cells through a specific marker, namely the protein CD36.
Once inside a tumor, our immune cells become traitors
New research has found a subset of our immune cells (called regulatory T cells) that are highly abundant in the tumor microenvironment and are particularly good at suppressing the anticancer immune response.

Related Tumor Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...