Nav: Home

Scientists discover path to improving game-changing battery electrode

December 12, 2017

Menlo Park, Calif. -- If you add more lithium to the positive electrode of a lithium-ion battery - overstuff it, in a sense - it can store much more charge in the same amount of space, theoretically powering an electric car 30 to 50 percent farther between charges. But these lithium-rich cathodes quickly lose voltage, and years of research have not been able to pin down why - until now.

After looking at the problem from many angles, researchers from Stanford University, two Department of Energy national labs and the battery manufacturer Samsung created a comprehensive picture of how the same chemical processes that give these cathodes their high capacity are also linked to changes in atomic structure that sap performance.

"This is good news," said William E. Gent, a Stanford University graduate student and Siebel Scholar who led the study. "It gives us a promising new pathway for optimizing the voltage performance of lithium-rich cathodes by controlling the way their atomic structure evolves as a battery charges and discharges."

Michael Toney, a distinguished staff scientist at SLAC National Accelerator Laboratory and a co-author of the paper, added, "It is a huge deal if you can get these lithium-rich electrodes to work because they would be one of the enablers for electric cars with a much longer range. There is enormous interest in the automotive community in developing ways to implement these, and understanding what the technological barriers are may help us solve the problems that are holding them back."

The team's report appears today in Nature Communications.

The researchers studied the cathodes with a variety of X-ray techniques at SLAC's Stanford Synchrotron Radiation Lightsource (SSRL) and Lawrence Berkeley National Laboratory's Advanced Light Source (ALS). Theorists from Berkeley Lab's Molecular Foundry, led by David Prendergast, were also involved, helping the experimenters understand what to look for and explain their results.

The cathodes themselves were made by Samsung Advanced Institute of Technology using commercially relevant processes, and assembled into batteries similar to those in electric vehicles.

"This ensured that our results represented an understanding of a cutting-edge material that would be directly relevant for our industry partners," Gent said. As an ALS doctoral fellow in residence, he was involved in both the experiments and the theoretical modelling for the study.

Like a Bucket Half Empty

Batteries convert electrical energy to chemical energy for storage. They have three basic parts - two electrodes, the cathode and the anode, and the liquid electrolyte between them. As a lithium-ion battery charges and discharges, lithium ions shuttle back and forth between the two electrodes, where they insert themselves into the electrode materials.

The more ions an electrode can absorb and release in relation to its size and weight - a factor known as capacity - the more energy it can store and the smaller and lighter a battery can be, allowing batteries to shrink and electric cars to travel more miles between charges.

"The cathode in today's lithium-ion batteries operates at only about half of its theoretical capacity, which means it should be able to last twice as long per charge," said Stanford Professor William Chueh, an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC.

"But you can't charge it all the way full. It's like a bucket you fill with water, but then you can only pour half of the water out. This is one of big challenges in the field right now - how do you get these cathode materials to behave up to their theoretical capacity? That's why people have been so excited about the prospect of storing a lot more energy in lithium-rich cathodes."

Like today's cathodes, lithium-rich cathodes are made of layers of lithium sandwiched between layers of transition metal oxides - elements like nickel, manganese or cobalt combined with oxygen. Adding lithium to the oxide layer increases the cathode's capacity by 30 to 50 percent.

Connecting the Dots

Previous research had shown that several things happen simultaneously when lithium-rich cathodes charge, Chueh said: Lithium ions move out of the cathode into the anode. Some transition metal atoms move in to take their place. Meanwhile, oxygen atoms release some of their electrons, establishing the electrical current and voltage for charging, according to Chueh. When the lithium ions and electrons return to the cathode during discharge, most of the transition metal interlopers return to their original spots, but not all of them and not right away. With each cycle, this back and forth changes the cathode's atomic structure. It's as if the bucket morphs into a smaller and slightly different bucket, Chueh added.

"We knew all these phenomena were probably related, but not how," Chueh said. "Now this suite of experiments at SSRL and ALS shows the mechanism that connects them and how to control it. This is a significant technological discovery that people have not holistically understood."

At SLAC's SSRL, Toney and his colleagues used a variety of X-ray methods to make a careful determination of how the cathode's atomic and chemical structure changed as the battery charged and discharged.

Another important tool was soft X-ray RIXS, or resonant inelastic X-ray scattering, which gleans atomic-scale information about a material's magnetic and electronic properties. An advanced RIXS system that began operation at ALS last year scans samples much faster than before.

"RIXS has mostly been used for fundamental physics," ALS scientist Wanli Yang said. "But with this new ALS system, we wanted to really open up RIXS for practical materials studies, including energy-related materials. Now that its potential for these studies has been partially demonstrated, we could easily extend RIXS to other battery materials and reveal information that was not accessible before."

The team is already working toward using the fundamental knowledge they have gained to design battery materials that can reach their theoretical capacity and not lose voltage over time.
-end-
The research was funded by the DOE Office of Energy Efficiency and Renewable Energy's Vehicle Technologies Office and by Samsung Advanced Institute of Technology Global Research Outreach Program.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit http://www.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/SLAC National Accelerator Laboratory

Related Lithium Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Risk of cardiac malformations from lithium during pregnancy less significant
New research suggests there may be a more modest increased risk of cardiac defects when using lithium during the first trimester of pregnancy.
Graphene-nanotube hybrid boosts lithium metal batteries
Rice University scientists build high-capacity lithium metal batteries with anodes made of a graphene-carbon nanotube hybrid.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Stabilizing molecule could pave way for lithium-air fuel cell
Lithium-oxygen fuel cells boast energy density levels comparable to fossil fuels and are thus seen as a promising candidate for future transportation-related energy needs.
Freezing lithium batteries may make them safer and bendable
Columbia Engineering Professor Yuan Yang has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones.
Electrochemical performance of lithium-ion capacitors
Pre-lithiated multiwalled carbon nanotubes and activated carbon (AC) materials were used as anode and cathode respectively for Lithium-ion capacitors (LICs).
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
New gel-like coating beefs up the performance of lithium-sulfur batteries
Yale scientists have developed an ultra-thin coating material that has the potential to extend the life and improve the efficiency of lithium-sulfur batteries, one of the most promising areas of energy research today.

Related Lithium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...