Water without windows: Capturing water vapor inside an electron microscope

December 12, 2017

The inside of an electron microscope, which requires vacuum levels similar to those encountered in outer space, can be an extremely inhospitable place for organic materials. Traditionally, life scientists have circumvented this problem by freezing their specimens so that that they can be safely loaded into a microscope. Now, researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have devised a new approach to imaging organic compounds.

By suspending organic samples in water vapor, OIST scientists were able to demonstrate another way to view them at high resolution. The researchers found they could send an electron beam, commonly used in microscopy, through vapor dense enough that it might be possible to keep samples in their native, wet state and still allow for ultrahigh resolution imaging.

Their study, published in the journal PLOS ONE, applies physics to a well-known problem in biology. The results could simplify what is currently a difficult process of imaging organic materials.

Usually, in order to view samples--particularly, fragile organic samples--inside a high-powered transmission electron microscope, scientists must undertake extensive preparation. Creating a plate of ice a fraction of a nanometer thick with a particular crystal structure can require many trials. This labor-intensive process, which can take months, inspired Cathal Cassidy, lead author on the paper and a researcher at OIST's Quantum Wave Microscopy Unit, to try another method.

"I saw my colleagues investing a lot of effort in this," said Cassidy, "and I thought, 'Couldn't we just avoid this ice thing altogether?'"

The researchers first used gold, an inorganic material, to demonstrate that atoms can be successfully imaged inside water vapor. Then, they looked at a virus using the same method. The sample remained stable, and the resulting image came out crisp, in relatively high resolution.

The researchers' method eliminates the need to freeze a sample or view it through a chamber. Although effective, each of these commonly used methods comes with disadvantages.

Ideally, the ice acts as a clean slate, or a window--relatively translucent, it allows scientists to view the materials suspended inside it with minimal interference. Hailed for "bringing biochemistry into a new era" by the Swedish Academy, this method received the 2017 Nobel Prize in chemistry. However, freezing does not allow scientists to study dynamic processes--like the live interaction of a virus with a host cell.

Alternately, scientists can view organic samples by suspending them in liquid, enclosed in a chamber with ultra-thin windows. These windows prevent the liquid from seeping into the vacuum chamber and damaging the electron gun. Yet, thin as they are, even these minimal barriers degrade image quality. The chamber's geometry also significantly limits scientists in how much they can tilt a sample for a three-dimensional view.

The method devised by OIST researchers provides a feasible alternative to these popular approaches. The sample is suspended in water vapor, which is pumped into the portion of the tube surrounding the sample and rapidly pumped out again. Tiny apertures above and below the sample allow the electron beam to pass directly through it. Because the sample is not enclosed by ice or glass, it can be tilted for three-dimensional imaging.

Cassidy emphasized that the study is a first step toward high-resolution imaging of hydrated samples in water vapor. He said he hoped biologists would build on the results. The researchers' study and additional materials--including raw data--can be found in the journal PLOS ONE.

"Anybody who wants to try it or play with it, they can do it," he said, pointing to the availability of data. "If somebody else takes the baton and pushes this forward, I'd be really happy with that."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Microscope Articles from Brightsurf:

Microscope lens inspired by lighthouse
Custom-fabricated lenses make it easy to attach high-tech microscopes directly to cell incubators.

Print your own laboratory-grade microscope for US$18
For the first time, labs around the world can 3D print their own precision microscopes, thanks to an open-source design created at Bath.

Novel high-speed microscope captures brain neuroactivities
A research team led by Dr. Kevin Tsia from the University of Hong Kong (HKU); and Professor Ji Na, from the University of California, Berkeley (UC Berkeley) has successfully recorded the millisecond electrical signals in the neurons of an alert mouse with their super high-speed microscope - two-photon fluorescence microscope.

Graphene forms under microscope's eye
Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope.

Hybrid microscope could bring digital biopsy to the clinic
By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.

An ultrafast microscope for the quantum world
Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom.

SLAP microscope smashes speed records
A new 2-photon microscope captures videos of the brain faster than ever, revealing voltage changes and neurotransmitter release.

New 3D microscope visualises fast biological processes better than ever
Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have combined their expertise to develop a new type of microscope.

Use a microscope as a shovel? UConn researchers dig it
Using a familiar tool in a way it was never intended to be used opens up a whole new method to explore materials, report UConn researchers.

New method gives microscope a boost in resolution
Scientists at the University of W├╝rzburg have been able to boost current super-resolution microscopy by a novel tweak.

Read More: Microscope News and Microscope Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.