UTHealth researchers link epigenetic aging to bipolar disorder

December 12, 2017

HOUSTON - (Dec. 12, 2017) - Bipolar disorder may involve accelerated epigenetic aging, which could explain why persons with the disorder are more likely to have - and die from - age-related diseases, according to researchers from The University of Texas Health Science Center at Houston (UTHealth).

The findings were published in yesterday's issue of Translational Psychiatry, a Nature Publishing Group journal.

While chronological age is measured in the amount of time that a person has been alive, epigenetic age measures molecular markers of chemical modifications to DNA.

"Bipolar disorder has been previously associated with accelerated aging but the mechanisms are largely unknown," said Gabriel R. Fries, Ph.D., first author and post-doctoral research fellow in the Department of Psychiatry and Behavioral Sciences at McGovern Medical School at UTHealth. "We aimed to understand from our study the biology of what's driving the accelerated aging. What we found is that patients with bipolar disorder showed an accelerated epigenetic aging compared to healthy controls."

The chemical modifications could be precipitated by the disorder itself or by poor lifestyle habits in diet, exercise, tobacco use and illegal substance use.

"Controlling these factors is just as important as taking medications," Fries said.

Senior author of the study was Joao L. de Quevedo, M.D., Ph.D., professor and director of the Translational Psychiatry Program in the Department of Psychiatry and Behavioral Sciences at McGovern Medical School.

Using blood samples, the researchers compared 22 patients with bipolar disorder, 16 siblings of bipolar patients and 20 healthy controls. They also found that while older bipolar disorder patients had significantly accelerated epigenetic aging compared to controls, no difference was found in younger patients.

"We believe a difference wasn't detected in younger patients because they haven't had as much exposure to stressful events," Fries said. "This gave us a hint that cumulative chronic exposure to stress would relate to accelerated aging. We would see it more in older people who have experienced a lifetime of stress in dealing with the disease."

Along with the epigenetic clock, the study included two other biologic clocks: telomere length and mitochondrial DNA copy numbers.

"The epigenetic acceleration correlated with the number of copies of mitochondrial DNA, suggesting that the cross-talk between the nucleus and the mitochondria might be underlying the premature aging in bipolar disorder," Fries said.
-end-
McGovern Medical School co-authors were Isabelle Bauer, Ph.D.; Giselli Scaini, Ph.D.; Mon-Ju Wu, Ph.D.; Iram F. Kazimi, M.D.; Giovana Zunta-Soares, M.D.; Consuelo Walss-Bass, Ph.D.; and Jair Soares, M.D., Ph.D. Quevedo, Soares and Walss-Bass are also on the faculty of The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences.

The study was supported in part by grants from the Pat Rutherford, Jr. Endowed Chair in Psychiatry, John S. Dunn Foundation and the National Institute of Mental Health (R01MH085667), part of the National Institutes of Health.

University of Texas Health Science Center at Houston

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.