Pitt chemical engineers advance olefins production through computational modeling

December 12, 2018

PITTSBURGH (December 12, 2018) ... Olefins are simple compounds of hydrogen and carbon but represent the building blocks of chemistry, and are vital for the synthesis of materials from polymers and plastics to petrochemicals. However, olefin production requires the use of nonrenewable fossil fuels, energy intensive "cracking" facilities, and limited production control.

New research from the University of Pittsburgh's Swanson School of Engineering has introduced a method to effectively screen different catalysts that convert light alkanes to olefins. With light alkanes being abundant in the Marcellus and Utica shale reserves, this methodology may provide a more economical solution for olefins production.

Their research, "Structure-Activity Relationships in Alkane Dehydrogenation on γ-Al2O3: Site-Dependent Reactions" was recently featured on the cover of ACS Catalysis (DOI: 10.1021/acscatal.8b03484). Lead investigator is Giannis Mpourmpakis, the Bicentennial Alumni Faculty Fellow and Assistant Professor of Chemical and Petroleum Engineering at the Swanson School, and co-authors Mudit Dixit, PhD and Pavlo Kostetskyy, postdoctoral fellow at Northwestern University who earned his PhD in Dr. Mpourmpakis' CANELa lab.

"The tremendous success and vast reserves of shale gas have transformed the chemical market and made methane and light alkanes a versatile feedstock for value-added chemicals production," Dr. Mpourmpakis explained. "One of the most promising routes toward olefins is the dehydrogenation of alkanes on metal oxides, which is the chemical removal of molecular hydrogen from a hydrocarbon. But this process is energy intensive since it involves high temperatures and the dehydrogenation reaction mechanism is not well understood. As a result, any progress on olefins production relies on lengthy and expensive trial-and-error experiments in the lab."

According to Dr. Mpourmpakis, determining exactly how the alkane dehydrogenation activity depends on the exact type of different sites present on the surface of metal oxides has been difficult, in part because of the diversity of the many sites. His lab applied computational chemistry and mathematical modeling tools to predict how alkane dehydrogenation mechanisms and catalytic activity change on the different sites of the oxides.

"Being able to computationally screen these metal oxide surfaces and identify the exact catalytic active sites greatly limits trial-and-error experimentation in the lab," Dr. Mpourmpakis said. "We now have a better tool to develop active catalysts for alkane-olefin conversion, which could be a game-changer in the petrochemical and polymer industries."
The American Chemical Society Petroleum Research Fund (ACS-PRF, 56989-DNI5) supported this research. Computational support was provided by the Center for Research Computing at the University of Pittsburgh, and the NSF Extreme Science and Engineering Discovery Environment.

University of Pittsburgh

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.