Nav: Home

Combining three treatment strategies may significantly improve melanoma treatment

December 12, 2018

A study by a team led by a Massachusetts General Hospital (MGH) investigator finds evidence that combining three advanced treatment strategies for malignant melanoma - molecular targeted therapy, immune checkpoint blockade and the use of tumor-targeting viruses - may markedly improve outcomes. Their report of experiments in cellular and animal models is being published in Science Translational Medicine.

"We found that use of the oncolytic virus T-VEC significantly enhanced therapeutic response and tumor cell killing when combined with a MEK inhibitor and that adding a PD-1 blocker to that regimen further improved therapeutic responses," says Howard Kaufman, MD, of the MGH Division of Surgical Oncology, senior author of the report. "All three agents we used are already FDA approved, so our study provides justification for using them in combination. A clinical trial to examine this three-drug regimen should be a priority."

Around half of all melanomas are driven by mutations in the BRAF gene, and drugs that inhibit BRAF or MEK - another gene in the same pathway - have significantly improved outcomes for many patients. But treatment resistance often develops, particularly when several BRAF/MEK inhibitors are combined. Immune checkpoint inhibitors targeting molecules like PD-1 that prevent the immune system from attacking tumors have also led to major improvements, but combining checkpoint inhibitors can have toxic effects. Oncolytic viruses, which can directly infect and kill tumor cells and activate innate and adaptive immunity, are another way of directing the immune response against cancer. The virus used in this study, was the first and is still the only to receive FDA approval, based on a clinical trial led by Kaufman when he was at the Rutgers Cancer Institute.

In the current study, he and his colleagues first investigated the potential of combining the BRAF inhibitor vemurafenib with T-VEC in both human melanoma cell lines and mouse models of melanoma. While that combination led to increased cell killing in BRAF-mutated cell lines, the investigators were surprised to find that combining T-VEC with the MEK inhibitor trametinib - originally used as a control - increased cell death in both BRAF-mutated and unmutated melanoma cell lines. They then verified these improved results in an immune competent mouse model of melanoma and identified several aspects of the underlying mechanism, including its reliance on both cytotoxic CD8+ T cells and a group of dendritic cells and the generation of an inflammatory response characterized by increased PD-1 and PD-L1 expression.

That observation led them to try the triple combination of T-VEC, trametinib and a PD-1-targeting monoclonal antibody, which led to even greater tumor eradication in a melanoma mouse model. Overall, while the use of T-VEC or MEK inhibitor trametinib alone produced a treatment response in around 20 percent of animals, combining the two increased the response rate to 50 percent, and the triple therapy to almost 100 percent. The researchers also tested both double and triple combinations in a mouse model of colon cancer and observed similar results - survival was significantly improved when T-VEC was combined with either trametinib or anti-PD-1, and the triple combination complete eradicated the tumor in all mice treated.

"While we still don't know the mechanisms behind effects such as the improved response against tumors that lack BRAF mutations, an interaction between T-VEC and trametinib appears to be involved," says Kaufman. "The data from the colon cancer models suggests this combination has potential beyond treatment of melanoma. Now we need to develop appropriate clinical trials to see if this approach will benefit patients with melanoma and other types of cancer."
-end-
The lead author of the Science Translational Medicine paper is Praveen Bommareddy, MS, Rutgers Cancer Institute. Additional co-authors are Salvatore Aspromonate and Andrew Zloza, MD, PhD, Rutgers Cancer Institute, and Samuel Rabkin, PhD, MGH Neurosurgery. The study was supported by a grant from Amgen, Inc, and by National Institutes of Health grant R01 CA160762. Rutgers University has submitted a patent application for the triple combination therapy described in this paper.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $900 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, genomic medicine, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2018 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.