Nav: Home

Supporting structures of wind turbines contribute to wind farm blockage effect

December 12, 2019

WASHINGTON, D.C., December 12, 2019 -- Offshore wind power generation has become an increasingly promising source of renewable energy. Much about the aerodynamic effects of larger wind farms, however, remains poorly understood. New work in this week's Journal of Renewable and Sustainably Energy, from AIP Publishing, looks to provide more insight in how the structures necessary for wind farms affect air flow.

Scientists from Cranfield University and the University of Oxford present a theoretical model for estimating the aerodynamic effects of wind turbine towers on the performance of wind farms. Using what is called a two-scale coupled momentum balance method, the group was able to theoretically and computationally reconstruct conditions that large wind farms might face in the future, including the dampening effect that comes with spacing turbines close to one another.

A key feature of the paper, said author Lun Ma, is that this most recent update to their model looks beyond a wind turbine's rotor.

"In this paper, we have newly taken into account the influence of wind turbine towers that act as support structures, which was ignored in the original two-scale momentum model," Ma said. "Therefore, essentially, the new model helps us understand the potential impact of wind turbine support structures on the wind farm blockage effect."

Even expansive offshore wind farms face a blockage effect, in which wind slows down as it approaches turbines, as well as a wake effect, in which turbines slow wind down as it passes by them.

Precisely predicting such features of a wind farm before constructing it, however, remains a major challenge for the industry.

To get at this question, the researchers turned to two-scale momentum modeling that simulates how the efficiencies of individual wind turbines decrease as more are spaced closely together within a wind farm when considered in an ideal, infinitely large wind farm.

"This efficiency reduction predicted by the two-scale momentum model is closely related to the wind farm blockage effect," Ma said. "However, the original two-scale momentum model was a highly simplified model and needed further improvements for practical applications."

The group combined the momentum balance equation with another approach, called actuator disc theory, which let them include other factors, such as the impact of turbine support structures. The approach allowed them to begin considering more practical scenarios, like wind farms that are a finite size.

They then conducted simulations using computational fluid dynamics to verify that such structures contribute to the blockage effect, particularly through the drag on the wind that they produce.

Ma said the group will look to better understand how the blockage effect changes with weather conditions.
-end-
The article, "Prediction of the impact of support structures on the aerodynamic performance of large wind farms," is authored by Lun Ma, Takafumi Nishino and Antonios F. Antoniadis. The article appeared in the Journal of Renewable and Sustainable Energy on Dec. 10, 2019 (DOI: 10.1063/1.5120602) and can be accessed at https://aip.scitation.org/doi/10.1063/1.5120602.

ABOUT THE JOURNAL

Journal of Renewable and Sustainable Energy is an interdisciplinary journal that publishes across all areas of renewable and sustainable energy relevant to the physical science and engineering communities. Topics covered include solar, wind, biofuels and more, as well as renewable energy integration, energy meteorology and climatology, and renewable resourcing and forecasting. See https://aip.scitation.org/journal/rse.

American Institute of Physics

Related Wind Turbine Articles:

Wind turbine noise affects dream sleep and perceived sleep restoration
Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows.
Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.
Wind and water
Damaging rains from hurricanes can be more intense after winds begin to subside, say UC Santa Barbara scientists.
Silverswords may be gone with the wind
In a new study in the Ecological Society of America's journal Ecological Monographs, researchers seek to understand recent population declines of Haleakalā silverswords and identify conservation strategies for the future.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Saving bats from wind turbine death
Wind energy holds great promise as a source of renewable energy, but some have wondered addressing climate change has taken precedence over conservation of biodiversity.
Superconducting wind turbine chalks up first test success
A superconducting rotor has been successfully tested on an active wind turbine for the first time.
Wind turbine design and placement can mitigate negative effect on birds
Wind energy is increasingly seen as a sustainable alternative to fossil fuels, as it contributes to a reduction in greenhouse gas emissions.
Structure of protein nano turbine revealed
IST Austria scientists determine the first structure of a cell's rotary engine using state-of-art microscopy.
(Not only) the wind shows the way
When the South African dung beetle rolls its dung ball through the savannah, it must know the way as precisely as possible.
More Wind Turbine News and Wind Turbine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.