Nav: Home

Scientists map a planet's global wind patterns for the first time, and it's not Earth

December 12, 2019

Today, a paper published in Science documents for the first time the global wind circulation patterns in the upper atmosphere of a planet, 120 to 300 kilometers above the surface. The findings are based on local observations, rather than indirect measurements, unlike many prior measurements taken on Earth's upper atmosphere. But it didn't happen on Earth: it happened on Mars. On top of that, all the data came from an instrument and a spacecraft that weren't originally designed to collect wind measurements.

In 2016, Mehdi Benna and his colleagues proposed to the Mars Atmosphere and Volatile EvolutioN (MAVEN) project team that they remotely reprogram the MAVEN spacecraft and its Natural Gas and Ion Mass Spectrometer (NGIMS) instrument to do a unique experiment. They wanted to see if parts of the instrument that were normally stationary could "swing back and forth like a windshield wiper fast enough," to enable the tool to gather a new kind of data.

Initially, the MAVEN project team was reluctant to implement the modifications Benna and his colleagues requested. After all, MAVEN and NGIMS had been orbiting Mars since 2013, and they were working quite well collecting information about the composition of the Mars atmosphere. Why put all that at risk? Benna and his colleagues argued that this project would collect new kinds of data that could shape our understanding of the upper atmosphere on Mars, inform similar studies on Earth, and help us better understand planetary climate.

Benna, a planetary scientist operating out of the NASA Goddard Space Flight Center with the UMBC Center for Space Sciences Technology (CSST), came up with the windshield-wiper idea while brainstorming how to create an instrument that could collect information about global circulation patterns in Earth's upper atmosphere. It occurred to him that, together, MAVEN and NGIMS could do the same thing on Mars--and they were already in space.

With some persistence and a lot of preliminary analyses, Benna and his colleagues convinced the MAVEN mission leadership to give their idea a try, after Lockheed Martin, the spacecraft manufacturer, determined the modifications might be possible without damaging the satellite. "It's a clever reengineering in flight of how to operate the spacecraft and the instrument," Benna says. "And by doing both--the spacecraft doing something it was not designed to and the instrument doing something it was not designed to do--we made the wind measurements possible."

Ripple effect

The new paper was completed in collaboration with Yuni Lee, also of UMBC's CSST, and colleagues from the University of Michigan, George Mason University, and NASA. It is based on data collected two days per month for two years from 2016 to 2018. Some results were expected, and others were big surprises. "The refreshing thing is that the patterns that we observed in the upper atmosphere match globally what one would predict from models," says Benna. "The physics works."

Overall, the average circulation patterns from season to season were very stable on Mars. This is like saying that on the East Coast of the United States, throughout the year, weather systems generally flow from the West to the East in a predictable way.

One surprise came when the team analyzed the shorter-term variability of winds in the upper atmosphere, which was greater than anticipated. "On Mars, the average circulation is steady, but if you take a snapshot at any given time, the winds are highly variable," Benna says. More work is needed to determine why these contrasting patterns exist.

A second surprise was that the wind hundreds of kilometers above the planet's surface still contained information about landforms below, like mountains, canyons, and basins. As the air mass flows over those features, "it creates waves--ripple effects--that flow up to the upper atmosphere" and can be detected by MAVEN and NGIMS, Benna explains. "On Earth, we see the same kind of waves, but not at such high altitudes. That was the big surprise, that these can go up to 280 kilometers high."

Benna and colleagues have two hypotheses for why the waves, called "orthographic waves," last so long unchanged. For one, the atmosphere on Mars is much thinner than it is on Earth, so the waves can travel farther unimpeded, like ripples traveling farther in water than in molasses. Also, the average difference between geographic peaks and valleys is much greater on Mars than it is on Earth. It's not uncommon for mountains to be 20 kilometers tall on Mars, whereas Mt. Everest is not quite nine kilometers tall, and most terrestrial mountains are much shorter.

"The topography of Mars is driving this in a more pronounced way than it is on Earth," Benna says.

Forging ahead

Continuing to analyze the data from this study may help scientists figure out whether the same basic processes are in action on Earth's upper atmosphere. Ironically, "We had to go take these measurements on Mars to eventually understand the same phenomenon on Earth," Benna says. "Ultimately the results will help us understand the climate of Mars. What is its state and how is it evolving?"

But the team isn't satisfied with the current data set. "We want to keep measuring. We have two years of data, but we're not stopping there," Benna says. Even with the data set they already have, "We have many years of modeling and analysis ahead of us." It's a trove of information that can be examined in ways not yet imagined, to learn even more about how planets work.

University of Maryland Baltimore County

Related Mars Articles:

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.
Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.
What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.
The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.
Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.
Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
A material way to make Mars habitable
New research suggest that regions of the Martian surface could be made habitable with a material -- silica aerogel -- that mimics Earth's atmospheric greenhouse effect.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
More Mars News and Mars Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.