In Los Angeles Even Brown Smog Clouds May Have Silver Linings

December 12, 1997

In Los Angeles, the city with the worst air pollution problem in the country, even the brown smog clouds may have silver linings.

Not only does the city's smog cover appear to reduce dramatically the intensity of ultraviolet radiation that reaches the palm trees and pavement in the City of Angels, but the UV attenuation also appears to cut down the concentration of ozone below what would otherwise exist. These results are beneficial because ultraviolet light is known to cause skin cancer, and ozone exposure contributes to respiratory and cardiovascular illnesses.

This picture comes from the first detailed study of the causes and effects of major UV reductions that were originally measured in two studies performed in the area in 1973 and 1987. Both found reductions of UV radiation ranging from 22 to 46 percent.

Now Mark Z. Jacobson, an assistant professor of civil and environmental engineering at Stanford who specializes in creating computer models of the atmosphere, has identified the key chemical compounds in L.A. smog that appear to act as specialized UV filters. He has determined that the resulting reduction in UV levels has a significant side effect, that of lowering ozone levels on the ground by 5 to 8 percent. He is presenting these findings in a poster paper on Dec. 11 at the annual meeting of the American Geophysical Union in San Francisco.

The adverse health effects of smog are well known. A 1995 study in the Los Angeles basin found that increases in the concentration of particulates -- airborne, microscopic particles and droplets that are a major constituent of smog -- are associated with increases in the number of patients checking into local hospitals with chronic respiratory problems, cardiovascular complaints and acute respiratory ailments.

Similarly, the health effects of exposure to UV light are well established. The general rule of thumb is that a 1 percent increase in UV radiation is accompanied by a 2 percent increase in the incidence of skin cancer. For that reason, Jacobson found the two studies that reported such significant reductions in UV light levels of particular interest.

"Although the UV data were collected a long time ago, no study to date has examined the causes or effects of the observed reductions. So I decided to look into it," he said.

As Jacobson analyzed the information from the earlier studies, he determined that the scattering and absorption of UV light by the various gases present in the atmosphere was too small to explain the effect. The researcher also realized that the reductions of UV light were considerably higher than those for sunlight as a whole, which was attenuated by only 6 to 7 percent. This disparity allowed him to eliminate light scattering by aerosols because the concentrations required to reduce UV light by these amounts by scattering would also have reduced the total sunlight much more than was observed.

That left aerosol absorption as the most plausible cause of the UV reduction. To date, only elemental carbon and large soil compounds, such as iron and aluminum oxides, are considered important absorbers of visible and ultraviolet radiation. Both these candidates had problems, however. There wasn't enough elemental carbon in the L.A. atmosphere to account for such large UV reductions. Nor did the characteristics of the soil compounds fit the prevailing conditions. Because of their large size, these compounds do not stay suspended in the air for a long time and their concentrations were not high enough to reduce UV radiation significantly.

That led Jacobson to so-called secondary organics and nitrated inorganic particulates. Primary organics are carbon particulates emitted from factory smokestacks, vehicle tailpipes, backyard barbecues and other similar sources. Secondary organics are created when organic gases, which are also emitted from these sources, undergo chemical reactions in the atmosphere and condense onto or dissolve within existing particles.

Going to the scientific literature, he determined that large numbers of secondary organics, most notably those that have nitrate groups attached, have the desired characteristic of absorbing weakly in visible light and strongly in the ultraviolet. Studies have found that these nitrated aromatic compounds make up from 12 to 21 percent of the organic material found in particulates in the area. When he assumed that this material was evenly mixed within particles, the computer simulations did not show the magnitude of UV reductions that had been observed. When he assumed that secondary organic material coated the particles, however, the amount of UV reduction predicted was very close to what was observed.

Ozone is another urban air pollutant that can be harmful. The 1995 Los Angeles study also found that increased concentrations of ozone were accompanied with increased hospital check-ins by people with chronic and acute respiratory problems and cardiovascular complaints.

The reduction in ozone caused by reduced levels of ultraviolet light is relatively straightforward to explain. Ultraviolet radiation strongly affects the rates of chemical reactions that produce and destroy ozone. When UV radiation is reduced, the rate of production of ozone decreases more than the rate at which ozone is destroyed. This causes a net decrease in ozone levels.

Similar reductions in UV radiation should also be taking place in other polluted urban areas located in sunny, dry climates where there are high emissions of nitric oxides and reactive organic gases, Jacobson said. But in more humid climates, like that of the eastern United States, water tends to coat airborne particles, which keeps them from absorbing UV radiation and so weakens the filtering effect.

Jacobson's research is supported by the U.S. Environmental Protection Agency and the National Science Foundation.


Stanford University

Related Skin Cancer Articles from Brightsurf:

Increasing the effectiveness of immunotherapy against skin cancer
Researchers at the University of Bern have discovered a mechanism in the body's own immune system which is responsible for the maturation and activation of immune cells.

New electronic skin can react to pain like human skin
New pain-sensing prototype mimics the body's near-instant feedback response and reacts to painful sensations with the same lighting speed that nerve signals travel to the brain.

Studying how skin cancer starts
New research by Ortiz-Rodríguez and mentor Carlos Crespo, a professor and lead researcher in the The Crespo Group lab, reveals for perhaps the first time how quickly certain pre-cancerous lesions can form on the DNA of our skin when exposed to sunlight.

Skin-to-skin 'kangaroo care' shows important benefits for premature babies
A world-first study led by Monash University has demonstrated significant benefits to a premature baby's heart and brain function when held by the parent in skin-to-skin contact.

Mother/infant skin-to-skin touch boosts baby's brain development and function
As the world prioritizes social distancing due to COVID-19, research shows that extended use of Kangaroo Care, a skin-to-skin, chest-to-chest method of caring for a baby, can positively benefit full-term infants and their mothers, with important implications for post-partum depression.

IU researcher makes skin cancer discovery
An Indiana University cancer researcher has identified eight new genomic regions that increase a person's risk for skin cancer.

Skin-to-skin contact do not improve interaction between mother and preterm infant
Following a premature birth it is important that the parents and the infant quickly establish a good relationship.

Research reveals potential dangers during skin-to-skin contact for mother and baby following cesarean section birth
Research in the latest edition of the European Journal of Anaesthesiology (the official journal of the European Society of Anaesthesiology) reports the potential dangers of allowing skin-to-skin contact for mother and baby in the operating room, following a cesarean section birth.

Helping skin cells differentiate could be key to treating common skin cancer
A new study from Penn researchers has identified the key regulator that controls how the skin replaces itself and which can determine if cells turn into cancer.

Protein linked to aggressive skin cancer
Almost 300,000 people worldwide develop malignant melanoma each year. The disease is the most serious form of skin cancer and the number of cases reported annually is increasing, making skin cancer one of Sweden's most common forms of cancer.

Read More: Skin Cancer News and Skin Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to