Detector will play crucial role in physics experiment

December 12, 1999

WEST LAFAYETTE, Ind. Ð Scientists at Purdue University are winding up a project to design and build a key component of an experiment that aims to help answer a troubling mystery: If the Big Bang that created the cosmos spawned equal amounts of matter and antimatter, as theory predicts, where did all the antimatter go?

"The big question is, how did the universe survive?" says Ian Shipsey, a professor of physics at Purdue. "If matter and antimatter were created in equal quantities in the early universe, each antiparticle would have annihilated a particle, and the universe, as we know it, would have ceased to exist."

But the universe does not contain equal amounts of matter and antimatter; it is predominantly made of matter. A possible solution to the problem is that there are small differences in the properties of antimatter and matter, setting in motion an evolutionary process that, over billions of years, has resulted in today's matter-dominated universe.

The best way to test this theory is to analyze subatomic particles referred to as bottom quarks, also known as beauty quarks, which a silicon detector being built at Purdue is designed to do.

The detector, called Si3, is part of an overall experiment called CLEO III. It contains 450,000 silicon strips, or "cameras," each about the width of a human hair. The cameras detect the life and death of quarks, which are created when matter and antimatter collide. The tiny silicon strips are attached to 125,000 channels of sensitive electronics, arranged in four concentric cylinders and held in place by an elaborate tripod-like framework made of synthetic diamond and copper.

Shipsey heads the detector work, which involves four universities. The Si3, which is about 21 inches long, was shipped early this month to Cornell University, where it will be connected to other detectors in the CLEO III experiment, an international collaboration of about 20 universities.

Once considered strictly theoretical, antimatter has been steadily emerging into the world of reality. Particles of antimatter look and behave the same as ordinary subatomic particles. But although they have the same mass as their matter counterparts, they have the opposite electrical charge. If particles and antiparticles meet, they instantly annihilate each other, releasing a large amount of energy in the process.

Physicists use particle accelerators to produce antiparticles. At Cornell's Wilson Synchrotron Laboratory, electrons and their antimatter counterparts, positrons, are smashed together in an underground particle accelerator. As they collide, the particles annihilate, producing constituent particles whose properties must be precisely measured to further understand the nature of matter.

Various detectors are located at specific distances and positions from the point of collision. As the newly created particles speed away, they penetrate the silicon in the Si3 detector, which sends signals to a computer detailing the precise positions of the particles. The combined signals from all the detectors in CLEO III will be used to measure data such as momentum, velocity, energy and penetrating power of particles produced in collisions.

Those data will then be used to test the widely accepted "standard model" of physics, which states that matter is made of 12 fundamental building blocks. The theory says that all matter consists of six varieties of leptons, a family that includes electrons, and six varieties of quarks. The quarks are grouped into three sets of "twins": the up and down, the strange and charm, and the top and bottom. The quarks are held together by particles called gluons. For example, a proton is made of two up quarks and one down quark, bound together by gluons.

However, more precise information is needed to explain why this structure exists and to solve the matter-antimatter mystery. High-energy collisions at particle accelerators mimic conditions that existed in the early cosmos, yielding data critical to the research.
Writer: Emil Venere, (765) 494-4709,

Source: Ian Shipsey, (765) 494-5390,

Related Web sites:

Purdue's Si3 site:
Ian Shipsey's home page:
Cornell University CLEO site:



Technician Tom Smith, Purdue physicist Ian Shipsey and mechanical engineer Kirk Arndt, (left to right) work on a silicon detector, which will become part of the CLEO III physics experiment operated at Cornell University, where electrons and their antimatter counterparts, positrons, are smashed together in an underground particle accelerator.

A publication-quality photograph is available at the News Service Web site at and at the ftp site at Photo ID: Shipsey.quarks

Purdue University

Related Big Bang Articles from Brightsurf:

Do big tadpoles turn into big frogs? It's complicated, study finds
University of Arizona researchers studied the evolution of the body sizes of frogs and their tadpoles.

A 'bang' in LIGO and Virgo detectors signals most massive gravitational-wave source yet
Researchers have detected a signal from what may be the most massive black hole merger yet observed in gravitational waves.

Analysis: Health sector, big pharma spent big on lobbying for COVID-19 funding
To date, Congress has authorized roughly $3 trillion in COVID-19 relief assistance -- the largest relief package in history.

Unequal neutron-star mergers create unique "bang" in simulations
In a series of simulations, an international team of researchers determined that some neutron star collisions not only produce gravitational waves, but also electromagnetic radiation that should be detectable on Earth.

Supermassive black holes shortly after the Big Bang: How to seed them
They are billions of times larger than our Sun: how is it possible that supermassive black holes were already present when the Universe was 'just' 800 million years old?

Big data could yield big discoveries in archaeology, Brown scholar says
Parker VanValkenburgh, an assistant professor of anthropology, curated a journal issue that explores the opportunities and challenges big data could bring to the field of archaeology.

APS tip sheet: modeling the matter after big bang expansion
Matter's fragmentation after the big bang.

Giving cryptocurrency users more bang for their buck
A new cryptocurrency-routing scheme co-invented by MIT researchers can boost the efficiency -- and, ultimately, profits -- of certain networks designed to speed up notoriously slow blockchain transactions.

The core of massive dying galaxies already formed 1.5 billion years after the Big Bang
The most distant dying galaxy discovered so far, more massive than our Milky Way -- with more than a trillion stars -- has revealed that the 'cores' of these systems had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

The 'cores' of massive galaxies had already formed 1.5 billion years after the big bang
A distant galaxy more massive than our Milky Way -- with more than a trillion stars - has revealed that the 'cores' of massive galaxies in the Universe had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

Read More: Big Bang News and Big Bang Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to