Zeroing in on progeria: How mutant lamins cause premature aging

December 13, 2005

Children diagnosed with Hutchinson-Gilford Progeria Syndrome (HGPS) race through life against an unfairly fast clock. Cases are extremely rare--one in 8 million births--but time plays cruel tricks on HGPS newborns. They begin life in apparent good health but by six-eighteen months develop the first signs of premature aging, including hair loss, stiff joints, osteoporosis and atherosclerosis. Typically, the HGPS race through life runs out by age 13, finished by heart attacks or strokes.

But progeria researchers made a breakthrough in 2003, tracing HGPS to a spontaneous mutation in a gene encoding an important structural component of the cell nucleus, the organelle in which our DNA is stored, read out, and copied. As the so-called "Mothership of the Human Genome," the cell nucleus must keep all this vital genetic information safe but accessible inside a strong protective envelope. The inner membrane of the nuclear envelope is lined by tough but adaptable proteins called lamins. The mutated gene for HGPS affected the nuclear lamin A (LA) protein.

The discovery that progeria was a "laminopathy," a disorder caused by a nuclear lamin failure, gave HGPS families new hope because it gave clinical researchers new targets for drug or other interventions. But the discovery gave cell biologists a new problem. If HGPS was cellular aging run wild, was it a warp-speed version of "normal" aging? If so, what was it about the mutated LA protein behind HGPS that causes cells to age so rapidly?

In work presented Tuesday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco, Robert Goldman and his collaborators at the Northwestern University's Feinberg School of Medicine and elsewhere describe how they've zeroed in on the defective lamin A proteins linked to HGPS. While lamins polymerize into fibrous structures that hold up the "walls" of the nucleus, they also serve as an internal scaffold for the complex machinery involved in DNA replication and gene expression. It was in this later role that the researchers have been looking for clues to premature and possibly to normal aging.

Reporting on two sets of experiments, Goldman et al say that the mutant LA protein seems to interfere with key controls of gene expression and of the cell cycle. The first study discovered that the most common HGPS-linked mutant LA protein alters the organization of regions of chromosomes that are critically important in regulating gene expression. These so-called heterochromatic regions include the inactive X (Xi) chromosome found in normal female cells. One of the hallmarks of Xi heterochromatin is its association with proteins known as methylated histones. In the cells from a female HGPS patient, the researchers found that levels of this molecular hallmark and of an enzyme required for histone methylation of Xi are sharply lower.

The second set of results reveals mutant LA proteins turning up in the wrong place--too tightly linked to the membranes of the nuclear envelope--to be of much help during key stages of the cell cycle. The researchers believe that this localization failure of mutated LA proteins would severely compromise the ability of HGPS cells to engage in normal DNA replication, a probable factor in their rapid march to premature senescence. Whether similar missteps and miscues by nuclear lamins are part of "normal" human aging is the question that draws researchers onward, says Goldman.
-end-


American Society for Cell Biology

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.