Enhancement in the precision of high-speed milling of complex parts

December 13, 2005

The research team led by Norberto López de La Calle at the Department of Mechanical Engineering at the University of the Basque Country, have designed a new model for optimising the high-speed, 3- or 5- axis milling of complex parts. One of the objectives in this field has been the development of a methodology for the a priori estimation of errors due to flexion of the milling-machine housing system given that some errors, induced by cutting forces, lead to non-compliance with the tolerances of certain applications such as plastic or aluminium injection moulds, precision matrixes and the and the teeth of turbines and compressors.

Now there is available a module that operates with CAM and enables the selection of those milling trajectories, whether in 3- or 5-axes, that minimise the force producing the error. The final result is a saving in milling time and greater added value of the manufactured tools.

The value of this field of research has been tested with applications in a number of moulding and matrix companies.

Currently the research group is continuing with this research within the framework of the MARGUNE Cooperative Research Centre and the state-wide technological network for High-Yield R2-TAF Manufacture. Moreover, parallel lines are being worked on such as the milling of reduced-rigidity aeronautic items and non-conventional processes (laser, deposition, EDM) in cooperation with other bodies. The research team has at its disposal two machines with this technology (2000+ rpm screws), one with five simultaneous axes and advanced equipment for carrying out and monitoring milling tests.
-end-


Elhuyar Fundazioa

Related Mechanical Engineering Articles from Brightsurf:

Best practices for mechanical ventilation in patients with ARDS, COVID-19
A team from pulmonary and critical care medicine at Michigan Medicine outlines 20 evidence-based practices shown to reduce time spent on a ventilator and death in patients with acute respiratory failure and acute respiratory distress -- conditions that have many overlaps with severe COVID-19.

How cells use mechanical tension sensors to interact with their environment
In a painstaking experiment, scientists suspended a single protein filament between two microscopic beads.

Mechanical forces of biofilms could play role in infections
Studying bacterial biofilms, EPFL scientists have discovered that mechanical forces within them are sufficient to deform the soft material they grow on, e.g. biological tissues, suggesting a ''mechanical'' mode of bacterial infection.

How mechanical forces nudge tumors toward malignancy
Researchers studying two forms of skin cancer identified a long-overlooked factor determining why some tumors are more likely to metastasize than others: the physical properties of the tissue in which the cancer originates.

Building mechanical memory boards using origami
Origami can be used to create mechanical, binary switches, and in Applied Physics Letters, researchers report the fabrication of such a paper device, using the Kresling pattern, that can act as a mechanical switch.

Not just light: The sensitivity of photoreceptors to mechanical stimuli is unveiled
''We thought we knew almost everything about photoreceptors, but we have proved that is not the case''.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Cell removal as the result of a mechanical instability
Researchers at Kanazawa University report in the Biophysical Journal that the process of cell removal from an epithelial layer follows from an inherent mechanical instability.

Researchers demonstrate transport of mechanical energy, even through damaged pathways
Researchers from the University of Illinois at Urbana-Champaign's Grainger College of Engineering have experimentally demonstrated a new way to transport energy even through wave-guides that are defective, and even if the disorder is a transient phenomenon in time.

Tissues protect their DNA under mechanical stress
Nuclei and genetic material deform.

Read More: Mechanical Engineering News and Mechanical Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.