TRAF3 protein is a key part of the early immune response to viruses

December 13, 2005

A protein called TRAF3, with a previously unknown job in immune cells, is actually a key part of a mechanism that triggers release of anti-virus molecules called type I interferons (IFNs) as part of the body's rapid response against these invaders, according to investigators that include a scientist continuing this work at St. Jude Children's Research Hospital.

The discovery of TRAF3's role helps to explain how immune cells called macrophages use sensing devices called Toll-like receptors (TLRs) to orchestrate just the right response to different types of infections. TLRs are on the outer membranes of macrophages and respond to germs by triggering the production of proteins called cytokines. Various cytokines regulate different biological functions that are important during immune responses, such as inflammation and protection against viruses. In addition, some cytokines contain anti-inflammatory activities, which curb potentially harmful inflammation.

The researchers showed that TRAF3 is not only essential for production of type I interferons, but also for production of IL-10, a protein that prevents inflammation. In fact, the team showed that cells lacking the gene for TRAF3 can't produce IL-10 and instead over-produce proteins that cause inflammation.

A report on these results appears online in the November 23 prepublication issue of Nature.

"The discovery that TRAF3 is also recruited to Toll-like receptors was important," says Hans Haecker, M.D., Ph.D., the first author of the paper and currently an assistant member of the St. Jude Department of Infectious Diseases. "It filled in an important piece of the puzzle of the front-line immune response to viruses that we didn't even realize was missing. Further research using this simple system will help solve the mystery of how macrophages can pick and choose among different strategies for combating specific infections." Haecker was at the Technical University of Munich and the University of California, San Diego, when he worked on this project.

Researchers already knew that TLRs use proteins called adapters to help them recruit small armies of signaling molecules that trigger the right response by the immune cell to invaders, such as viruses. They also knew that a protein called MyD88 was one of the adaptors that help to recruit these armies; and that one of the first proteins in the signaling army recruited to MyD88 was the protein TRAF6. But what was unclear was the exact series of steps that occurred during the recruitment of the full army of signaling molecules by TLRs.

Therefore, the team developed a novel strategy to study how TLRs recruit their armies of signaling molecules. The team inserted into macrophages an artificial gene that coded for the TLR adaptor MyD88 fused to a molecule called gyrase B. In the presence of a drug called coumermycin, gyrase B, these molecules bind together in pairs. This 'pair forming' activity of gyrase B triggered a similar formation of pairs of the MyD88 molecules that were fused to gyrase B. This reaction, which produced pairs of MyD88-gyrase B complexes, then triggers recruitment of the rest of the army of proteins that form the macrophages's signaling pathway, according to Haecker.

During these studies the researchers discovered that TRAF3 as well as TRAF6 is recruited to such adaptors. In addition to demonstrating that TRAF3 was recruited by MyD88 to generate type I interferons, the researchers showed that TRAF3 can be recruited by another important adaptor, called TRIF, which is used by some TLRs. This demonstrated that TRAF3 has a general role in controlling the TLR-dependent type I interferon and IL-10 response.

Results of the study suggest that the specific type of immune response triggered by TLR signaling depends on the relative amounts of TRAF6 and TRAF3 initially recruited, and the different signaling proteins each of those proteins subsequently recruit to the growing army.

The TLR system is part of the body's innate immune response. Innate immunity is a primitive type of defense that does not use antibodies. Instead, immune cells that are part of innate immunity act as an early-warning system that attempts to stop infections quickly so that the other, more complex immune responses don't have to be called into play.
-end-
Other authors of the study include Vanessa Redecke, Li-Chung Hsu, Gang G. Wang, Mark P. Kamps, Eyal Raz and Michael Karin (University of California, San Diego); Blagoy Blagoev, Irina Kratchmarova and Matthias Mann (University of Southern Denmark); Hermann Wagner and Georg Haecker (Technische Universität München, Munich, Germany).

This work was supported in part by the National Institutes of Health, the American Cancer Society and the Deutsche Forschungsgemeinschaft.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

St. Jude Children's Research Hospital

Related Immune Cells Articles from Brightsurf:

Gut immune cells may help send MS into remission
An international research team led by UCSF scientists has shown, for the first time, that gut immune cells travel to the brain during multiple sclerosis (MS) flare-ups in patients.

Immune cells sculpt circuits in the brain
Brain immune cells, called microglia, protect the brain from infection and inflammation.

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.

Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.

Read More: Immune Cells News and Immune Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.